Normalized defining polynomial
\( x^{16} + 180 x^{14} + 12908 x^{12} + 480955 x^{10} + 10154633 x^{8} + 124160495 x^{6} + 856071173 x^{4} + 3034925355 x^{2} + 4259406061 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(202650197413724823740953600000000=2^{16}\cdot 5^{8}\cdot 29^{4}\cdot 1621^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 1621$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{1621} a^{12} + \frac{180}{1621} a^{10} - \frac{60}{1621} a^{8} - \frac{482}{1621} a^{6} + \frac{689}{1621} a^{4}$, $\frac{1}{1621} a^{13} + \frac{180}{1621} a^{11} - \frac{60}{1621} a^{9} - \frac{482}{1621} a^{7} + \frac{689}{1621} a^{5}$, $\frac{1}{5281499285052521666717653} a^{14} + \frac{859436398188262330724}{5281499285052521666717653} a^{12} - \frac{259172898608740343366592}{5281499285052521666717653} a^{10} + \frac{114918288503843607630645}{5281499285052521666717653} a^{8} + \frac{2277257941948260732467539}{5281499285052521666717653} a^{6} + \frac{448332145149391925394}{3258173525633881348993} a^{4} - \frac{219987754184447639726}{3258173525633881348993} a^{2} + \frac{346262742389044659}{2009977498848785533}$, $\frac{1}{5281499285052521666717653} a^{15} + \frac{859436398188262330724}{5281499285052521666717653} a^{13} - \frac{259172898608740343366592}{5281499285052521666717653} a^{11} + \frac{114918288503843607630645}{5281499285052521666717653} a^{9} + \frac{2277257941948260732467539}{5281499285052521666717653} a^{7} + \frac{448332145149391925394}{3258173525633881348993} a^{5} - \frac{219987754184447639726}{3258173525633881348993} a^{3} + \frac{346262742389044659}{2009977498848785533} a$
Class group and class number
$C_{2}\times C_{207240}$, which has order $414480$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5728.02182166 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 71 conjugacy class representatives for t16n1430 are not computed |
| Character table for t16n1430 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.852038125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 1621 | Data not computed | ||||||