Properties

Label 16.0.20219997937...9616.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 7^{8}\cdot 13^{8}$
Root discriminant $33.05$
Ramified primes $2, 3, 7, 13$
Class number $8$ (GRH)
Class group $[2, 4]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10000, 0, 13100, 0, 401, 0, -4644, 0, 5324, 0, 2610, 0, 428, 0, 32, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 32*x^14 + 428*x^12 + 2610*x^10 + 5324*x^8 - 4644*x^6 + 401*x^4 + 13100*x^2 + 10000)
 
gp: K = bnfinit(x^16 + 32*x^14 + 428*x^12 + 2610*x^10 + 5324*x^8 - 4644*x^6 + 401*x^4 + 13100*x^2 + 10000, 1)
 

Normalized defining polynomial

\( x^{16} + 32 x^{14} + 428 x^{12} + 2610 x^{10} + 5324 x^{8} - 4644 x^{6} + 401 x^{4} + 13100 x^{2} + 10000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2021999793722499352559616=2^{16}\cdot 3^{8}\cdot 7^{8}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1092=2^{2}\cdot 3\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{1092}(1,·)$, $\chi_{1092}(1091,·)$, $\chi_{1092}(391,·)$, $\chi_{1092}(727,·)$, $\chi_{1092}(911,·)$, $\chi_{1092}(209,·)$, $\chi_{1092}(755,·)$, $\chi_{1092}(155,·)$, $\chi_{1092}(545,·)$, $\chi_{1092}(547,·)$, $\chi_{1092}(337,·)$, $\chi_{1092}(937,·)$, $\chi_{1092}(365,·)$, $\chi_{1092}(883,·)$, $\chi_{1092}(181,·)$, $\chi_{1092}(701,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{4}$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{9} - \frac{1}{5} a^{7} - \frac{3}{20} a^{5} + \frac{3}{20} a^{3} - \frac{2}{5} a$, $\frac{1}{60} a^{12} + \frac{1}{15} a^{10} + \frac{1}{10} a^{8} + \frac{17}{60} a^{6} - \frac{1}{5} a^{4} + \frac{11}{30} a^{2} - \frac{1}{3}$, $\frac{1}{120} a^{13} + \frac{1}{120} a^{11} + \frac{3}{40} a^{9} + \frac{29}{120} a^{7} + \frac{19}{40} a^{5} - \frac{47}{120} a^{3} + \frac{1}{30} a$, $\frac{1}{93104054914200} a^{14} - \frac{255942916931}{31034684971400} a^{12} + \frac{160475251909}{5476709112600} a^{10} - \frac{1075266975593}{18620810982840} a^{8} + \frac{429223473647}{5476709112600} a^{6} - \frac{41630119143419}{93104054914200} a^{4} - \frac{3320711285729}{15517342485700} a^{2} + \frac{222216344302}{465520274571}$, $\frac{1}{465520274571000} a^{15} - \frac{255942916931}{155173424857000} a^{13} + \frac{160475251909}{27383545563000} a^{11} + \frac{3579935770117}{93104054914200} a^{9} + \frac{429223473647}{27383545563000} a^{7} + \frac{51473935770781}{465520274571000} a^{5} - \frac{3739679537501}{19396678107125} a^{3} - \frac{141764840968}{465520274571} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{47374352}{458189246625} a^{15} + \frac{11668374037}{3665513973000} a^{13} + \frac{2898534173}{71872823000} a^{11} + \frac{160083571687}{733102794600} a^{9} + \frac{17686858659}{71872823000} a^{7} - \frac{3868937870729}{3665513973000} a^{5} + \frac{2608809159691}{3665513973000} a^{3} + \frac{16333342137}{12218379910} a \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 801785.836569 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-273}) \), \(\Q(\sqrt{273}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-91}) \), \(\Q(\sqrt{91}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{39}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(i, \sqrt{273})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{91})\), \(\Q(\sqrt{3}, \sqrt{-91})\), \(\Q(\sqrt{-3}, \sqrt{91})\), \(\Q(\sqrt{3}, \sqrt{91})\), \(\Q(\sqrt{-3}, \sqrt{-91})\), \(\Q(i, \sqrt{13})\), \(\Q(i, \sqrt{21})\), \(\Q(i, \sqrt{39})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{-13}, \sqrt{21})\), \(\Q(\sqrt{13}, \sqrt{-21})\), \(\Q(\sqrt{7}, \sqrt{-39})\), \(\Q(\sqrt{-7}, \sqrt{39})\), \(\Q(\sqrt{-13}, \sqrt{-21})\), \(\Q(\sqrt{13}, \sqrt{21})\), \(\Q(\sqrt{-7}, \sqrt{-39})\), \(\Q(\sqrt{7}, \sqrt{39})\), \(\Q(\sqrt{3}, \sqrt{-13})\), \(\Q(\sqrt{3}, \sqrt{13})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{-13})\), \(\Q(\sqrt{-3}, \sqrt{13})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{7}, \sqrt{-13})\), \(\Q(\sqrt{-7}, \sqrt{13})\), \(\Q(\sqrt{21}, \sqrt{-39})\), \(\Q(\sqrt{-21}, \sqrt{39})\), \(\Q(\sqrt{-7}, \sqrt{-13})\), \(\Q(\sqrt{7}, \sqrt{13})\), \(\Q(\sqrt{21}, \sqrt{39})\), \(\Q(\sqrt{-21}, \sqrt{-39})\), 8.0.1421970391296.10, 8.0.1421970391296.7, 8.0.1421970391296.8, 8.0.592240896.1, 8.0.49787136.1, 8.0.17555190016.1, 8.0.1421970391296.5, 8.0.1421970391296.6, 8.0.1421970391296.4, 8.0.1421970391296.9, 8.0.1421970391296.1, 8.0.1421970391296.2, 8.8.1421970391296.1, 8.0.1421970391296.3, 8.0.5554571841.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$