Normalized defining polynomial
\( x^{16} + 28 x^{14} - 12 x^{13} + 332 x^{12} - 96 x^{11} + 2186 x^{10} + 504 x^{9} + 7133 x^{8} + 11064 x^{7} + 13478 x^{6} + 25992 x^{5} + 65776 x^{4} + 21360 x^{3} + 40090 x^{2} + 65676 x + 22689 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20197192269684151435657216=2^{32}\cdot 7^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(728=2^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{728}(1,·)$, $\chi_{728}(363,·)$, $\chi_{728}(391,·)$, $\chi_{728}(209,·)$, $\chi_{728}(727,·)$, $\chi_{728}(27,·)$, $\chi_{728}(545,·)$, $\chi_{728}(547,·)$, $\chi_{728}(337,·)$, $\chi_{728}(519,·)$, $\chi_{728}(365,·)$, $\chi_{728}(573,·)$, $\chi_{728}(155,·)$, $\chi_{728}(181,·)$, $\chi_{728}(183,·)$, $\chi_{728}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{6} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} - \frac{1}{6} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{7} - \frac{1}{6} a^{3}$, $\frac{1}{360} a^{12} + \frac{1}{45} a^{11} + \frac{1}{360} a^{10} - \frac{2}{45} a^{9} + \frac{1}{30} a^{8} - \frac{1}{2} a^{7} + \frac{1}{40} a^{6} + \frac{1}{30} a^{5} - \frac{89}{180} a^{4} + \frac{13}{90} a^{3} - \frac{97}{360} a^{2} - \frac{19}{45} a + \frac{47}{120}$, $\frac{1}{360} a^{13} - \frac{1}{120} a^{11} - \frac{1}{15} a^{10} + \frac{1}{18} a^{9} + \frac{7}{30} a^{8} - \frac{19}{40} a^{7} - \frac{1}{6} a^{6} + \frac{43}{180} a^{5} + \frac{1}{10} a^{4} + \frac{49}{120} a^{3} - \frac{4}{15} a^{2} + \frac{37}{360} a - \frac{2}{15}$, $\frac{1}{506313720} a^{14} + \frac{138659}{168771240} a^{13} + \frac{5453}{16877124} a^{12} + \frac{13497623}{168771240} a^{11} + \frac{142093}{101262744} a^{10} + \frac{2249663}{42192810} a^{9} + \frac{298307}{5114280} a^{8} + \frac{75084271}{168771240} a^{7} - \frac{978881}{29783160} a^{6} - \frac{1553461}{84385620} a^{5} - \frac{96637}{309672} a^{4} - \frac{868723}{18752360} a^{3} + \frac{2270098}{5753565} a^{2} - \frac{5965873}{33754248} a - \frac{22687127}{56257080}$, $\frac{1}{60626082259813003560} a^{15} + \frac{574446632}{688932752952420495} a^{14} + \frac{4614688379937821}{3368115681100722420} a^{13} - \frac{26339146503161213}{20208694086604334520} a^{12} - \frac{4520683373172322963}{60626082259813003560} a^{11} - \frac{93404141540678627}{60626082259813003560} a^{10} + \frac{35386625908404685}{1347246272440288968} a^{9} - \frac{345409045111625963}{5052173521651083630} a^{8} - \frac{3574223870124817337}{12125216451962600712} a^{7} - \frac{9515125513275739151}{60626082259813003560} a^{6} - \frac{85482982781260151}{1347246272440288968} a^{5} - \frac{3178326231794054557}{10104347043302167260} a^{4} - \frac{2737600954723029322}{7578260282476625445} a^{3} - \frac{8725860389049490273}{60626082259813003560} a^{2} - \frac{1034905357898171101}{2245410454067148280} a - \frac{640497090450510295}{1347246272440288968}$
Class group and class number
$C_{3}\times C_{12}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{71161925675287}{139050647384892210} a^{15} + \frac{9332074864433}{32717799384680520} a^{14} - \frac{79107383927221}{5452966564113420} a^{13} + \frac{58419410737645}{4120019181774584} a^{12} - \frac{4510714028439659}{25281935888162220} a^{11} + \frac{40981755639688909}{278101294769784420} a^{10} - \frac{9336485834430277}{7725035965827345} a^{9} + \frac{74385550270502879}{185400863179856280} a^{8} - \frac{1092217964808114151}{278101294769784420} a^{7} - \frac{497203687398421447}{139050647384892210} a^{6} - \frac{236542427473746107}{46350215794964070} a^{5} - \frac{2021153211606260363}{185400863179856280} a^{4} - \frac{7819617197124069401}{278101294769784420} a^{3} + \frac{444401040700394411}{111240517907913768} a^{2} - \frac{245150815020684863}{10300047954436460} a - \frac{633328646530832657}{30900143863309380} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 377056.097397 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_2^4$ |
| Character table for $C_2^4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |