Normalized defining polynomial
\( x^{16} - 7 x^{15} + 32 x^{14} - 109 x^{13} + 286 x^{12} - 623 x^{11} + 1178 x^{10} - 1895 x^{9} + 2554 x^{8} - 2901 x^{7} + 2784 x^{6} - 2259 x^{5} + 1683 x^{4} - 1332 x^{3} + 1044 x^{2} - 576 x + 144 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(201814631309311180281=3^{12}\cdot 11^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} + \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{5}{24} a^{6} - \frac{5}{24} a^{5} - \frac{5}{24} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{48} a^{13} + \frac{1}{48} a^{11} - \frac{1}{24} a^{10} - \frac{1}{16} a^{9} + \frac{1}{24} a^{8} - \frac{1}{16} a^{7} + \frac{1}{8} a^{6} + \frac{5}{48} a^{5} - \frac{1}{6} a^{4} - \frac{5}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{96} a^{14} - \frac{1}{96} a^{12} - \frac{1}{16} a^{11} + \frac{5}{96} a^{10} + \frac{1}{24} a^{9} - \frac{11}{96} a^{8} - \frac{1}{48} a^{7} + \frac{7}{96} a^{6} - \frac{1}{24} a^{5} + \frac{1}{96} a^{4} - \frac{5}{16} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{172133088} a^{15} + \frac{125133}{57377696} a^{14} - \frac{1549615}{172133088} a^{13} - \frac{239585}{172133088} a^{12} + \frac{6857521}{172133088} a^{11} + \frac{1261965}{57377696} a^{10} - \frac{7046687}{57377696} a^{9} - \frac{20888707}{172133088} a^{8} - \frac{9740341}{172133088} a^{7} + \frac{12043189}{172133088} a^{6} + \frac{11649251}{172133088} a^{5} + \frac{10587661}{172133088} a^{4} - \frac{1603701}{3586106} a^{3} - \frac{364511}{3586106} a^{2} - \frac{2863919}{7172212} a + \frac{33298}{1793053}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{18865}{198768} a^{15} - \frac{233629}{397536} a^{14} + \frac{169037}{66256} a^{13} - \frac{1090441}{132512} a^{12} + \frac{503593}{24846} a^{11} - \frac{5577011}{132512} a^{10} + \frac{15167449}{198768} a^{9} - \frac{45821501}{397536} a^{8} + \frac{597256}{4141} a^{7} - \frac{60370607}{397536} a^{6} + \frac{8851249}{66256} a^{5} - \frac{13066955}{132512} a^{4} + \frac{4857611}{66256} a^{3} - \frac{257708}{4141} a^{2} + \frac{737187}{16564} a - \frac{120707}{8282} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53834.7389087 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-3}, \sqrt{-11})\), 4.2.11979.1 x2, 4.0.3993.1 x2, 8.0.143496441.1, 8.2.14206147659.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 11 | Data not computed | ||||||