Normalized defining polynomial
\( x^{16} + 1096 x^{14} + 388532 x^{12} + 49550160 x^{10} + 1983245154 x^{8} + 33736151360 x^{6} + 254419951232 x^{4} + 721459939328 x^{2} + 360729969664 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(201607431658701025979129418461200790453223424=2^{62}\cdot 137^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $587.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4384=2^{5}\cdot 137\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4384}(1,·)$, $\chi_{4384}(3051,·)$, $\chi_{4384}(1097,·)$, $\chi_{4384}(4147,·)$, $\chi_{4384}(273,·)$, $\chi_{4384}(1059,·)$, $\chi_{4384}(1369,·)$, $\chi_{4384}(3289,·)$, $\chi_{4384}(859,·)$, $\chi_{4384}(2465,·)$, $\chi_{4384}(1955,·)$, $\chi_{4384}(2193,·)$, $\chi_{4384}(3561,·)$, $\chi_{4384}(2155,·)$, $\chi_{4384}(3251,·)$, $\chi_{4384}(4347,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{137} a^{4}$, $\frac{1}{137} a^{5}$, $\frac{1}{137} a^{6}$, $\frac{1}{137} a^{7}$, $\frac{1}{412918} a^{8} + \frac{2}{1507} a^{6} - \frac{4}{1507} a^{4} + \frac{5}{11} a^{2} + \frac{5}{11}$, $\frac{1}{825836} a^{9} + \frac{1}{1507} a^{7} - \frac{2}{1507} a^{5} - \frac{3}{11} a^{3} + \frac{5}{22} a$, $\frac{1}{1651672} a^{10} - \frac{1}{274} a^{6} - \frac{4}{1507} a^{4} - \frac{7}{44} a^{2} - \frac{3}{11}$, $\frac{1}{3303344} a^{11} - \frac{1}{548} a^{7} - \frac{2}{1507} a^{5} - \frac{7}{88} a^{3} + \frac{4}{11} a$, $\frac{1}{15386976352} a^{12} + \frac{7}{28078424} a^{10} - \frac{27}{28078424} a^{8} + \frac{60}{25619} a^{6} + \frac{945}{409904} a^{4} - \frac{167}{748} a^{2} - \frac{52}{187}$, $\frac{1}{30773952704} a^{13} + \frac{7}{56156848} a^{11} - \frac{27}{56156848} a^{9} - \frac{127}{51238} a^{7} - \frac{2047}{819808} a^{5} + \frac{581}{1496} a^{3} - \frac{26}{187} a$, $\frac{1}{52345368022957803904} a^{14} + \frac{38300155}{13086342005739450976} a^{12} + \frac{27838578193}{95520744567441248} a^{10} + \frac{4033454019}{11940093070930156} a^{8} + \frac{1248491294049}{1394463424342208} a^{6} + \frac{50301010625}{20506815063856} a^{4} + \frac{158635408329}{636160321324} a^{2} + \frac{78297617606}{159040080331}$, $\frac{1}{104690736045915607808} a^{15} + \frac{38300155}{26172684011478901952} a^{13} + \frac{27838578193}{191041489134882496} a^{11} + \frac{4033454019}{23880186141860312} a^{9} - \frac{8930073847135}{2788926848684416} a^{7} + \frac{50301010625}{41013630127712} a^{5} - \frac{477524912995}{1272320642648} a^{3} - \frac{80742462725}{318080160662} a$
Class group and class number
$C_{2}\times C_{6}\times C_{139032408}$, which has order $1668388896$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7631128.109331426 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.2 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 34$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.2 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 34$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $137$ | 137.8.6.2 | $x^{8} + 1507 x^{4} + 675684$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 137.8.6.2 | $x^{8} + 1507 x^{4} + 675684$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |