Normalized defining polynomial
\( x^{16} + 180 x^{14} + 15254 x^{12} - 24 x^{11} + 789956 x^{10} + 4536 x^{9} + 27168519 x^{8} + 320448 x^{7} + 631526924 x^{6} + 4689888 x^{5} + 9632982138 x^{4} - 69573768 x^{3} + 87721316756 x^{2} - 1678274856 x + 363345076222 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19997735500105260525348149910306816=2^{48}\cdot 3^{8}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4848=2^{4}\cdot 3\cdot 101\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4848}(1,·)$, $\chi_{4848}(2627,·)$, $\chi_{4848}(1415,·)$, $\chi_{4848}(2827,·)$, $\chi_{4848}(1615,·)$, $\chi_{4848}(4241,·)$, $\chi_{4848}(403,·)$, $\chi_{4848}(3029,·)$, $\chi_{4848}(203,·)$, $\chi_{4848}(1817,·)$, $\chi_{4848}(605,·)$, $\chi_{4848}(4039,·)$, $\chi_{4848}(3637,·)$, $\chi_{4848}(2425,·)$, $\chi_{4848}(1213,·)$, $\chi_{4848}(3839,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5704589327} a^{14} - \frac{91033435}{5704589327} a^{13} - \frac{1638552044}{5704589327} a^{12} + \frac{2790957540}{5704589327} a^{11} + \frac{273113556}{5704589327} a^{10} + \frac{97996122}{5704589327} a^{9} + \frac{1260767226}{5704589327} a^{8} + \frac{2342368966}{5704589327} a^{7} - \frac{2614655181}{5704589327} a^{6} - \frac{184665889}{5704589327} a^{5} - \frac{963084587}{5704589327} a^{4} + \frac{1697970214}{5704589327} a^{3} + \frac{1504175107}{5704589327} a^{2} - \frac{747741675}{5704589327} a - \frac{387449402}{5704589327}$, $\frac{1}{1026028165756252775486476074193191798458826402479} a^{15} + \frac{68682752567712861402773966239999841224}{1026028165756252775486476074193191798458826402479} a^{14} + \frac{333978247371588753306399082526025511657675121566}{1026028165756252775486476074193191798458826402479} a^{13} - \frac{391338949779946418677077880447787861716652918288}{1026028165756252775486476074193191798458826402479} a^{12} + \frac{247442599070710882036084734036220032011554978864}{1026028165756252775486476074193191798458826402479} a^{11} - \frac{9113035203496082803931348786681947260485759165}{21830386505452186712478214344535995711889923457} a^{10} - \frac{323313232675108048828287623383194296725799921010}{1026028165756252775486476074193191798458826402479} a^{9} - \frac{101317505644090800385659618678628607453564469350}{1026028165756252775486476074193191798458826402479} a^{8} + \frac{16874191080945180058160198449630102710498734171}{1026028165756252775486476074193191798458826402479} a^{7} - \frac{223064480656100917624014722581536195853493578427}{1026028165756252775486476074193191798458826402479} a^{6} - \frac{482617840450330003904126945832203397473305247006}{1026028165756252775486476074193191798458826402479} a^{5} - \frac{484851155975382097509114484689546875906440215485}{1026028165756252775486476074193191798458826402479} a^{4} - \frac{507060352891441509272240052089472328364081899475}{1026028165756252775486476074193191798458826402479} a^{3} + \frac{67268899730145273433379289455432899271447400593}{1026028165756252775486476074193191798458826402479} a^{2} + \frac{37259477828818201630352277448593619564643444434}{1026028165756252775486476074193191798458826402479} a - \frac{508892181498785537825088292656237112529389592042}{1026028165756252775486476074193191798458826402479}$
Class group and class number
$C_{3}\times C_{2168040}$, which has order $6504120$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $101$ | 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |