Normalized defining polynomial
\( x^{16} + 2000 x^{14} + 1449212 x^{12} + 493166662 x^{10} + 82609767019 x^{8} + 6431469174712 x^{6} + 205796436670039 x^{4} + 2611054203786213 x^{2} + 10285190654933041 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(199875058073008840373089541044249600000000=2^{16}\cdot 5^{8}\cdot 29^{6}\cdot 139^{4}\cdot 181^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $381.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 139, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{139} a^{10} + \frac{54}{139} a^{8} - \frac{2}{139} a^{6} - \frac{56}{139} a^{4} - \frac{50}{139} a^{2}$, $\frac{1}{139} a^{11} + \frac{54}{139} a^{9} - \frac{2}{139} a^{7} - \frac{56}{139} a^{5} - \frac{50}{139} a^{3}$, $\frac{1}{400620935} a^{12} - \frac{852572}{400620935} a^{10} - \frac{26981485}{80124187} a^{8} + \frac{98177034}{400620935} a^{6} - \frac{189665689}{400620935} a^{4} - \frac{22934}{99385} a^{2} - \frac{126}{715}$, $\frac{1}{400620935} a^{13} - \frac{852572}{400620935} a^{11} - \frac{26981485}{80124187} a^{9} + \frac{98177034}{400620935} a^{7} - \frac{189665689}{400620935} a^{5} - \frac{22934}{99385} a^{3} - \frac{126}{715} a$, $\frac{1}{2851861840677166499576489143466228656353982865105} a^{14} + \frac{1739008422562255704396398900526264740518}{2851861840677166499576489143466228656353982865105} a^{12} + \frac{6564868231090822403952486397068767095488124}{19668012694325286203975787196318818319682640449} a^{10} - \frac{592773458114137071897586363651723645459899209111}{2851861840677166499576489143466228656353982865105} a^{8} - \frac{30362880041414101311372670501461922952924517736}{98340063471626431019878935981594091598413202245} a^{6} - \frac{9808785526118390584070769920109046132534070111}{20516991659547960428607835564505242132043042195} a^{4} + \frac{2469770858117371827123366777241425865542889}{5089801949776224368297652087448584006956845} a^{2} + \frac{305702029914723410428364788965205207}{3678280282693866549326394738516550381}$, $\frac{1}{2851861840677166499576489143466228656353982865105} a^{15} + \frac{1739008422562255704396398900526264740518}{2851861840677166499576489143466228656353982865105} a^{13} + \frac{6564868231090822403952486397068767095488124}{19668012694325286203975787196318818319682640449} a^{11} - \frac{592773458114137071897586363651723645459899209111}{2851861840677166499576489143466228656353982865105} a^{9} - \frac{30362880041414101311372670501461922952924517736}{98340063471626431019878935981594091598413202245} a^{7} - \frac{9808785526118390584070769920109046132534070111}{20516991659547960428607835564505242132043042195} a^{5} + \frac{2469770858117371827123366777241425865542889}{5089801949776224368297652087448584006956845} a^{3} + \frac{305702029914723410428364788965205207}{3678280282693866549326394738516550381} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{25540748}$, which has order $3269215744$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29196.3261178 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n868 are not computed |
| Character table for t16n868 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.131225.1, 4.4.4525.1, 4.4.725.1, 8.8.17220000625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.10 | $x^{8} + 2 x^{6} + 8 x^{3} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
| 2.8.8.9 | $x^{8} + 6 x^{6} + 4 x^{5} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $139$ | 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $181$ | 181.4.2.2 | $x^{4} - 181 x^{2} + 589698$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 181.4.0.1 | $x^{4} - x + 54$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 181.8.4.1 | $x^{8} + 3538188 x^{4} - 5929741 x^{2} + 3129693580836$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |