Normalized defining polynomial
\( x^{16} - 3 x^{15} - 14 x^{14} + 84 x^{13} - 62 x^{12} - 651 x^{11} + 2188 x^{10} - 489 x^{9} - 11819 x^{8} + 23001 x^{7} + 11356 x^{6} - 94281 x^{5} + 129040 x^{4} - 73992 x^{3} + 31750 x^{2} - 33489 x + 17551 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19757093783472562500000000=2^{8}\cdot 3^{12}\cdot 5^{12}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{12} a^{10} + \frac{1}{4} a^{7} + \frac{5}{12} a^{6} - \frac{1}{4} a^{5} + \frac{5}{12} a^{4} - \frac{1}{4} a^{3} - \frac{5}{12}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{8} + \frac{5}{12} a^{7} + \frac{1}{12} a^{6} + \frac{5}{12} a^{5} - \frac{1}{4} a^{4} + \frac{1}{3} a^{2} - \frac{5}{12} a - \frac{1}{3}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{12} a^{8} + \frac{5}{24} a^{7} - \frac{5}{24} a^{6} + \frac{7}{24} a^{5} + \frac{5}{12} a^{4} + \frac{7}{24} a^{3} - \frac{1}{24} a^{2} - \frac{11}{24} a + \frac{1}{24}$, $\frac{1}{24} a^{13} + \frac{1}{24} a^{9} + \frac{1}{24} a^{8} - \frac{1}{2} a^{7} - \frac{5}{12} a^{6} + \frac{3}{8} a^{5} + \frac{3}{8} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{5}{24}$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{12} + \frac{1}{48} a^{11} + \frac{1}{24} a^{9} + \frac{1}{24} a^{8} + \frac{5}{16} a^{7} + \frac{1}{12} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{7}{48} a^{3} - \frac{1}{16} a^{2} - \frac{1}{8} a + \frac{7}{16}$, $\frac{1}{1562391304805422366984368} a^{15} - \frac{758772624949156317689}{390597826201355591746092} a^{14} - \frac{5979405363258248147629}{1562391304805422366984368} a^{13} + \frac{16442026579362993929021}{1562391304805422366984368} a^{12} - \frac{1297311073710873943163}{32549818850112965978841} a^{11} + \frac{9682135326816843063799}{260398550800903727830728} a^{10} - \frac{15128216868818882285041}{781195652402711183492184} a^{9} + \frac{6274412023987777220599}{1562391304805422366984368} a^{8} + \frac{39929081546576458559171}{390597826201355591746092} a^{7} - \frac{138052695695785676385469}{390597826201355591746092} a^{6} + \frac{26406878707275335793373}{65099637700225931957682} a^{5} - \frac{148591054102284829876499}{520797101601807455661456} a^{4} + \frac{1983880706642525513945}{91905370870907198057904} a^{3} - \frac{197755762088647515722845}{781195652402711183492184} a^{2} + \frac{69330664508809837177217}{1562391304805422366984368} a + \frac{28897146704205776416037}{97649456550338897936523}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{927545834201851}{384558432163830672} a^{15} - \frac{280767646156505}{64093072027305112} a^{14} - \frac{4985834959811495}{128186144054610224} a^{13} + \frac{20071806030706935}{128186144054610224} a^{12} + \frac{2230097249796205}{64093072027305112} a^{11} - \frac{97890416407234315}{64093072027305112} a^{10} + \frac{334193437772713435}{96139608040957668} a^{9} + \frac{372562108430059165}{128186144054610224} a^{8} - \frac{1605690612241429965}{64093072027305112} a^{7} + \frac{833100100484514825}{32046536013652556} a^{6} + \frac{3705483277245709021}{64093072027305112} a^{5} - \frac{20422928642883462755}{128186144054610224} a^{4} + \frac{2812176250161332765}{22621084244931216} a^{3} - \frac{1023864438735124315}{32046536013652556} a^{2} + \frac{4743985054559835165}{128186144054610224} a - \frac{1145906098265005029}{32046536013652556} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1115822.93458 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T456):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), 4.0.3625.1, 4.4.32625.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.1064390625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 5 | Data not computed | ||||||
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |