Normalized defining polynomial
\( x^{16} - 4 x^{15} - 18 x^{14} + 4 x^{13} + 630 x^{12} - 854 x^{11} - 4132 x^{10} - 5402 x^{9} + 64057 x^{8} + 17336 x^{7} + 369868 x^{6} + 449552 x^{5} - 1606091 x^{4} - 4147460 x^{3} + 5655015 x^{2} + 18597494 x + 16275257 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1968033759133442969054057291329=17^{14}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{34} a^{8} - \frac{1}{17} a^{7} + \frac{3}{17} a^{6} + \frac{7}{17} a^{5} - \frac{15}{34} a^{4} - \frac{7}{17} a^{3} - \frac{11}{34} a^{2} - \frac{15}{34} a + \frac{1}{34}$, $\frac{1}{34} a^{9} + \frac{1}{17} a^{7} - \frac{4}{17} a^{6} + \frac{13}{34} a^{5} - \frac{5}{17} a^{4} - \frac{5}{34} a^{3} - \frac{3}{34} a^{2} + \frac{5}{34} a + \frac{1}{17}$, $\frac{1}{34} a^{10} - \frac{2}{17} a^{7} + \frac{1}{34} a^{6} - \frac{2}{17} a^{5} - \frac{9}{34} a^{4} - \frac{9}{34} a^{3} - \frac{7}{34} a^{2} - \frac{1}{17} a - \frac{1}{17}$, $\frac{1}{34} a^{11} - \frac{7}{34} a^{7} - \frac{7}{17} a^{6} + \frac{13}{34} a^{5} - \frac{1}{34} a^{4} + \frac{5}{34} a^{3} - \frac{6}{17} a^{2} + \frac{3}{17} a + \frac{2}{17}$, $\frac{1}{3026} a^{12} + \frac{1}{3026} a^{11} + \frac{21}{3026} a^{10} + \frac{14}{1513} a^{9} + \frac{6}{1513} a^{8} + \frac{1103}{3026} a^{7} - \frac{11}{1513} a^{6} - \frac{44}{1513} a^{5} + \frac{543}{1513} a^{4} + \frac{532}{1513} a^{3} + \frac{695}{1513} a^{2} + \frac{1353}{3026} a - \frac{643}{3026}$, $\frac{1}{3026} a^{13} + \frac{10}{1513} a^{11} + \frac{7}{3026} a^{10} - \frac{8}{1513} a^{9} + \frac{23}{3026} a^{8} + \frac{1011}{3026} a^{7} - \frac{211}{1513} a^{6} + \frac{676}{1513} a^{5} + \frac{434}{1513} a^{4} + \frac{74}{1513} a^{3} - \frac{393}{3026} a^{2} - \frac{553}{1513} a - \frac{25}{178}$, $\frac{1}{3026} a^{14} - \frac{13}{3026} a^{11} + \frac{9}{3026} a^{10} - \frac{3}{3026} a^{9} - \frac{15}{1513} a^{8} - \frac{205}{1513} a^{7} - \frac{789}{3026} a^{6} - \frac{199}{1513} a^{5} - \frac{373}{1513} a^{4} + \frac{511}{1513} a^{3} - \frac{302}{1513} a^{2} + \frac{720}{1513} a + \frac{133}{3026}$, $\frac{1}{111287290191662718724266999996589537114} a^{15} + \frac{564390740660427533409114454624919}{6546311187744865807309823529211149242} a^{14} - \frac{14766302528182132057951523548956417}{111287290191662718724266999996589537114} a^{13} + \frac{10563593508324220685882313798757201}{111287290191662718724266999996589537114} a^{12} + \frac{633601506627714091481106800004274745}{55643645095831359362133499998294768557} a^{11} + \frac{109892205926930098428371558441750788}{55643645095831359362133499998294768557} a^{10} + \frac{31779934401600964460547602861570589}{111287290191662718724266999996589537114} a^{9} + \frac{549084678314700099779163537006006614}{55643645095831359362133499998294768557} a^{8} - \frac{8356074227205997822417820716854151825}{55643645095831359362133499998294768557} a^{7} - \frac{185286402778727943562609029191842600}{625209495458779318675657303351626613} a^{6} - \frac{4276500122864727894601173429118648273}{55643645095831359362133499998294768557} a^{5} + \frac{16520604471770043616142937574769132805}{55643645095831359362133499998294768557} a^{4} - \frac{25534666340509760470934104268378895527}{111287290191662718724266999996589537114} a^{3} - \frac{52251070493041129499471030612445310927}{111287290191662718724266999996589537114} a^{2} + \frac{21246999644948481189187882909747499816}{55643645095831359362133499998294768557} a - \frac{50497990936508466829473956729871308217}{111287290191662718724266999996589537114}$
Class group and class number
$C_{984}$, which has order $984$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 238836.43919 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-731}) \), \(\Q(\sqrt{17}, \sqrt{-43})\), 4.4.4913.1, 4.0.9084137.2, 8.0.82521545034769.3, 8.4.758716206377.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |