Normalized defining polynomial
\( x^{16} - 6 x^{15} + 12 x^{14} + 12 x^{13} + 19 x^{12} - 318 x^{11} + 2100 x^{10} - 5213 x^{9} + 14622 x^{8} - 4630 x^{7} + 927 x^{6} + 121358 x^{5} + 476036 x^{4} + 432383 x^{3} + 2307490 x^{2} + 427097 x + 1543193 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1968033759133442969054057291329=17^{14}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2314} a^{14} + \frac{75}{2314} a^{13} - \frac{40}{1157} a^{12} + \frac{749}{2314} a^{11} - \frac{155}{2314} a^{10} + \frac{336}{1157} a^{9} - \frac{1115}{2314} a^{8} + \frac{653}{2314} a^{7} - \frac{297}{1157} a^{6} - \frac{213}{2314} a^{5} - \frac{1149}{2314} a^{4} - \frac{10}{89} a^{3} - \frac{467}{2314} a^{2} - \frac{163}{2314} a + \frac{86}{1157}$, $\frac{1}{23112265684574802806748869756894906340838334} a^{15} - \frac{1333623898120073905743037045220003615423}{23112265684574802806748869756894906340838334} a^{14} - \frac{342349195813573918306004294274601162929457}{11556132842287401403374434878447453170419167} a^{13} + \frac{2581736338236838401369417213816034415712008}{11556132842287401403374434878447453170419167} a^{12} - \frac{6377574655741178331707511499280440848824587}{23112265684574802806748869756894906340838334} a^{11} - \frac{3620996083917010498565581504556435682603302}{11556132842287401403374434878447453170419167} a^{10} + \frac{1942680182936362581676828492470554912227648}{11556132842287401403374434878447453170419167} a^{9} - \frac{7132957492599232948839975234720592365647357}{23112265684574802806748869756894906340838334} a^{8} - \frac{5755358855232805088240182246469152183443226}{11556132842287401403374434878447453170419167} a^{7} + \frac{1183799879450031435526901771565082693248322}{11556132842287401403374434878447453170419167} a^{6} + \frac{1151382467255204000738999673834794478953541}{23112265684574802806748869756894906340838334} a^{5} - \frac{359085497588468946735137622562464202657985}{11556132842287401403374434878447453170419167} a^{4} - \frac{4273631703180602540373296446671491032823323}{11556132842287401403374434878447453170419167} a^{3} + \frac{1916189129613163335607705864966314109307953}{23112265684574802806748869756894906340838334} a^{2} + \frac{16843567712308940882976122412342456419478}{888933295560569338721110375265188705416859} a + \frac{9363492039866256917770040665081533356501579}{23112265684574802806748869756894906340838334}$
Class group and class number
$C_{2}\times C_{178}$, which has order $356$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 535402.98004 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.12427.1, 4.4.4913.1, 4.2.211259.1, 8.0.1402866265591073.2, 8.4.758716206377.1, 8.4.44630365081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $43$ | 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |