Normalized defining polynomial
\( x^{16} - x^{15} + 22 x^{14} - 81 x^{13} + 865 x^{12} - 3306 x^{11} + 6939 x^{10} - 17651 x^{9} + 5438 x^{8} + 65961 x^{7} - 35077 x^{6} - 42578 x^{5} - 29044 x^{4} - 122784 x^{3} + 52048 x^{2} + 209248 x + 87872 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1968033759133442969054057291329=17^{14}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{4} - \frac{1}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{11} + \frac{1}{8} a^{6} + \frac{3}{16} a^{5} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{9} - \frac{1}{8} a^{8} - \frac{1}{32} a^{6} + \frac{1}{8} a^{5} - \frac{7}{32} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{1664} a^{13} + \frac{3}{832} a^{12} + \frac{1}{208} a^{11} + \frac{51}{1664} a^{10} + \frac{11}{832} a^{9} - \frac{7}{104} a^{8} - \frac{5}{128} a^{7} - \frac{33}{832} a^{6} - \frac{11}{208} a^{5} - \frac{379}{1664} a^{4} + \frac{215}{832} a^{3} - \frac{3}{8} a^{2} + \frac{23}{208} a - \frac{31}{104}$, $\frac{1}{33280} a^{14} + \frac{3}{33280} a^{13} + \frac{99}{16640} a^{12} + \frac{443}{33280} a^{11} - \frac{651}{33280} a^{10} + \frac{171}{16640} a^{9} - \frac{2017}{33280} a^{8} + \frac{1169}{33280} a^{7} + \frac{783}{16640} a^{6} - \frac{6979}{33280} a^{5} - \frac{3529}{33280} a^{4} + \frac{1171}{3328} a^{3} - \frac{323}{832} a^{2} - \frac{1483}{4160} a + \frac{457}{2080}$, $\frac{1}{5786616451925754251223040} a^{15} - \frac{27591874788618526847}{5786616451925754251223040} a^{14} - \frac{163141487708158688389}{723327056490719281402880} a^{13} - \frac{19726654795593598987297}{5786616451925754251223040} a^{12} - \frac{5313257577201162937441}{5786616451925754251223040} a^{11} + \frac{40653201493570408647973}{1446654112981438562805760} a^{10} - \frac{39347300791915593823037}{5786616451925754251223040} a^{9} - \frac{703755522942719561358061}{5786616451925754251223040} a^{8} - \frac{113567911881002664543191}{1446654112981438562805760} a^{7} - \frac{940025042455649560787599}{5786616451925754251223040} a^{6} - \frac{872645009760169497350819}{5786616451925754251223040} a^{5} + \frac{11968116966311215638081}{144665411298143856280576} a^{4} + \frac{5939710120553497600777}{15227938031383563819008} a^{3} - \frac{24734302748100076991441}{55640542806978406261760} a^{2} + \frac{20188421994559932648599}{45207941030669955087680} a - \frac{13682402933881042767225}{36166352824535964070144}$
Class group and class number
$C_{24}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57492245.5287 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-731}) \), \(\Q(\sqrt{17}, \sqrt{-43})\), 4.2.211259.1 x2, 4.0.9084137.1 x2, 8.0.82521545034769.1, 8.2.32624796874211.2 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |