Normalized defining polynomial
\( x^{16} - 3 x^{15} + 9 x^{14} - 20 x^{13} + 57 x^{12} - 154 x^{11} + 890 x^{10} - 2775 x^{9} + 5444 x^{8} - 7210 x^{7} + 9714 x^{6} - 10126 x^{5} + 14764 x^{4} - 14510 x^{3} + 14457 x^{2} - 20828 x + 39019 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(196417177218537844140625=5^{8}\cdot 31^{4}\cdot 859^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31, 859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} - \frac{1}{5} a^{11} + \frac{1}{3} a^{10} + \frac{2}{15} a^{9} + \frac{1}{5} a^{8} + \frac{1}{3} a^{7} - \frac{7}{15} a^{6} + \frac{2}{15} a^{5} + \frac{1}{3} a^{4} - \frac{1}{5} a^{3} + \frac{7}{15} a^{2} - \frac{7}{15} a + \frac{1}{15}$, $\frac{1}{15} a^{13} - \frac{4}{15} a^{11} + \frac{2}{15} a^{10} - \frac{2}{5} a^{9} - \frac{1}{15} a^{8} - \frac{7}{15} a^{7} - \frac{4}{15} a^{6} - \frac{4}{15} a^{5} - \frac{1}{5} a^{4} - \frac{2}{15} a^{3} - \frac{1}{15} a^{2} - \frac{1}{3} a + \frac{1}{5}$, $\frac{1}{15} a^{14} + \frac{1}{3} a^{11} - \frac{1}{15} a^{10} + \frac{7}{15} a^{9} + \frac{1}{3} a^{8} + \frac{1}{15} a^{7} - \frac{2}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{5} a^{4} + \frac{2}{15} a^{3} - \frac{7}{15} a^{2} + \frac{1}{3} a + \frac{4}{15}$, $\frac{1}{8161661140580917928181934925634045} a^{15} + \frac{152558166245788428499647965691092}{8161661140580917928181934925634045} a^{14} + \frac{97870171164139776048543908114027}{8161661140580917928181934925634045} a^{13} + \frac{250505276218307652489728214830543}{8161661140580917928181934925634045} a^{12} - \frac{867656968675117620053792116001438}{8161661140580917928181934925634045} a^{11} - \frac{1352396349952612159613738654783012}{2720553713526972642727311641878015} a^{10} + \frac{85402080518976966548061709005058}{8161661140580917928181934925634045} a^{9} + \frac{417777271974872453856421021284236}{2720553713526972642727311641878015} a^{8} + \frac{927148267689616075420485262626796}{8161661140580917928181934925634045} a^{7} - \frac{1690910634588940224639808462405618}{8161661140580917928181934925634045} a^{6} + \frac{1324673232124739915909018402420846}{8161661140580917928181934925634045} a^{5} - \frac{2903991500024221164351807057315208}{8161661140580917928181934925634045} a^{4} + \frac{2862306829618546170597279931829129}{8161661140580917928181934925634045} a^{3} + \frac{244587845371929679734701737026122}{1632332228116183585636386985126809} a^{2} + \frac{3406584331887998458638532762770598}{8161661140580917928181934925634045} a + \frac{2634085118947459701270605640146432}{8161661140580917928181934925634045}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35623.8314936 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 73728 |
| The 77 conjugacy class representatives for t16n1869 are not computed |
| Character table for t16n1869 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 8.4.16643125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 859 | Data not computed | ||||||