Normalized defining polynomial
\( x^{16} + 26 x^{14} - 162 x^{13} + 508 x^{12} - 2962 x^{11} + 13584 x^{10} - 43238 x^{9} + 137070 x^{8} - 449230 x^{7} + 1204442 x^{6} - 2277300 x^{5} + 5564157 x^{4} - 14652992 x^{3} + 9205006 x^{2} + 9782862 x + 16075687 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(196070675502739156742348734464=2^{24}\cdot 3^{2}\cdot 19^{4}\cdot 97^{4}\cdot 103^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 97, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{301} a^{14} - \frac{120}{301} a^{13} + \frac{32}{301} a^{12} + \frac{53}{301} a^{11} + \frac{90}{301} a^{10} - \frac{64}{301} a^{9} - \frac{9}{43} a^{8} - \frac{4}{301} a^{7} - \frac{14}{43} a^{6} - \frac{32}{301} a^{5} - \frac{107}{301} a^{4} + \frac{41}{301} a^{3} + \frac{9}{301} a^{2} - \frac{81}{301} a + \frac{97}{301}$, $\frac{1}{31272699345010507413345169908103873678034351230566773} a^{15} - \frac{51760607897154341286119564728273761101449121285654}{31272699345010507413345169908103873678034351230566773} a^{14} - \frac{268352619353673114950204965207257930133034929121688}{4467528477858643916192167129729124811147764461509539} a^{13} - \frac{15352832822366512902014622209926569651088059287892866}{31272699345010507413345169908103873678034351230566773} a^{12} + \frac{12227703962056729627522504732310547225436939164216254}{31272699345010507413345169908103873678034351230566773} a^{11} + \frac{14719898680176425003903059975917440298941646658345424}{31272699345010507413345169908103873678034351230566773} a^{10} + \frac{5953480220049679337794941339583569329675991494696692}{31272699345010507413345169908103873678034351230566773} a^{9} + \frac{9493453233437607125782174308532005589308584886813468}{31272699345010507413345169908103873678034351230566773} a^{8} - \frac{39334391585803475681585483485793675146703416617166}{172777344447571864162128010542010351812344481936833} a^{7} + \frac{12738386162296596759785674343526312176360590575604603}{31272699345010507413345169908103873678034351230566773} a^{6} - \frac{6417452123557827194548803573282401904663225195038467}{31272699345010507413345169908103873678034351230566773} a^{5} - \frac{241733044793617008785907877433226572324349719861797}{727272077790942032868492323444276132047310493734111} a^{4} + \frac{12018499945962176847387795861208080241984549821081704}{31272699345010507413345169908103873678034351230566773} a^{3} - \frac{7885095215696539151010555595350879835324567346835623}{31272699345010507413345169908103873678034351230566773} a^{2} + \frac{10214217326570544256254386834789818274591611306049581}{31272699345010507413345169908103873678034351230566773} a + \frac{3327175691218417885626273837629431831041970599040674}{31272699345010507413345169908103873678034351230566773}$
Class group and class number
$C_{2}\times C_{2}\times C_{44}$, which has order $176$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 686339.835524 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 60 conjugacy class representatives for t16n1538 are not computed |
| Character table for t16n1538 is not computed |
Intermediate fields
| 4.4.1957.1, 8.0.2941324032.1, 8.0.27674917817088.1, 8.8.9224972605696.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||
| $103$ | 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 103.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |