\\ Pari/GP code for working with number field 16.0.195397579112879711966327281.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^16 - y^15 + 27*y^14 - 21*y^13 + 373*y^12 - 417*y^11 + 2998*y^10 - 2924*y^9 + 9324*y^8 - 10479*y^7 + 13730*y^6 - 39988*y^5 + 27154*y^4 + 108305*y^3 + 215491*y^2 + 133159*y + 42529, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - x^15 + 27*x^14 - 21*x^13 + 373*x^12 - 417*x^11 + 2998*x^10 - 2924*x^9 + 9324*x^8 - 10479*x^7 + 13730*x^6 - 39988*x^5 + 27154*x^4 + 108305*x^3 + 215491*x^2 + 133159*x + 42529, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])