Normalized defining polynomial
\( x^{16} - x^{15} + 27 x^{14} - 21 x^{13} + 373 x^{12} - 417 x^{11} + 2998 x^{10} - 2924 x^{9} + 9324 x^{8} - 10479 x^{7} + 13730 x^{6} - 39988 x^{5} + 27154 x^{4} + 108305 x^{3} + 215491 x^{2} + 133159 x + 42529 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(195397579112879711966327281=11^{12}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{2}{7} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} - \frac{3}{7} a^{5} - \frac{2}{7} a^{4} - \frac{3}{7} a^{2} - \frac{3}{7}$, $\frac{1}{21} a^{11} + \frac{1}{21} a^{10} + \frac{2}{21} a^{9} + \frac{1}{3} a^{8} - \frac{4}{21} a^{7} - \frac{10}{21} a^{6} + \frac{8}{21} a^{5} + \frac{2}{21} a^{4} + \frac{4}{21} a^{3} + \frac{10}{21} a^{2} - \frac{1}{7} a + \frac{10}{21}$, $\frac{1}{21} a^{12} + \frac{1}{21} a^{10} + \frac{5}{21} a^{9} + \frac{10}{21} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{2}{21} a^{4} + \frac{2}{7} a^{3} + \frac{8}{21} a^{2} - \frac{8}{21} a - \frac{10}{21}$, $\frac{1}{147} a^{13} + \frac{1}{147} a^{12} - \frac{2}{147} a^{11} + \frac{3}{49} a^{10} + \frac{1}{7} a^{9} - \frac{2}{21} a^{8} + \frac{16}{49} a^{7} - \frac{25}{147} a^{5} - \frac{31}{147} a^{4} + \frac{2}{147} a^{3} - \frac{23}{49} a^{2} - \frac{3}{49} a - \frac{37}{147}$, $\frac{1}{735} a^{14} - \frac{2}{735} a^{13} - \frac{4}{245} a^{12} + \frac{8}{735} a^{11} + \frac{22}{735} a^{10} - \frac{2}{35} a^{9} - \frac{302}{735} a^{8} - \frac{40}{147} a^{7} + \frac{22}{245} a^{6} + \frac{23}{49} a^{5} - \frac{311}{735} a^{4} - \frac{292}{735} a^{3} - \frac{116}{245} a^{2} - \frac{16}{147} a + \frac{93}{245}$, $\frac{1}{547112497626868050612226402387995} a^{15} + \frac{57889413143716767340746605366}{547112497626868050612226402387995} a^{14} + \frac{324520824617472226911833223319}{182370832542289350204075467462665} a^{13} - \frac{10893422480077239132455249016778}{547112497626868050612226402387995} a^{12} - \frac{1064578831996447007403722196754}{547112497626868050612226402387995} a^{11} + \frac{28044225237913391642891759139494}{547112497626868050612226402387995} a^{10} - \frac{57955929624304280885339514065496}{182370832542289350204075467462665} a^{9} + \frac{26710704236528853130787025978224}{547112497626868050612226402387995} a^{8} + \frac{22753881587160875185908421160836}{547112497626868050612226402387995} a^{7} - \frac{4491709914639404075501010061534}{182370832542289350204075467462665} a^{6} + \frac{236602938755463516675828791987264}{547112497626868050612226402387995} a^{5} + \frac{887443834391201099521534781306}{5210595215493981434402156213219} a^{4} - \frac{3467613300409697655694246656498}{182370832542289350204075467462665} a^{3} + \frac{29200344018977863702265675483842}{182370832542289350204075467462665} a^{2} - \frac{268406072657092631917700122379656}{547112497626868050612226402387995} a - \frac{80496982015553898103586279271141}{182370832542289350204075467462665}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4622143.17972 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.SD_{16}$ (as 16T163):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $C_2^2.SD_{16}$ |
| Character table for $C_2^2.SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.6413.1, 8.0.2179708157.1, 8.0.263744686997.1, 8.0.13978468410841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |