Normalized defining polynomial
\( x^{16} - 2 x^{15} - 4 x^{14} + 17 x^{13} + 10 x^{12} + 68 x^{11} - 327 x^{10} + 6 x^{9} + 2108 x^{8} - 2111 x^{7} + 1478 x^{6} - 836 x^{5} + 409 x^{4} - 254 x^{3} + 132 x^{2} - 56 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1949444636015869140625=5^{12}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{44592910} a^{13} + \frac{130842}{4459291} a^{12} - \frac{6779073}{22296455} a^{11} + \frac{3329785}{8918582} a^{10} + \frac{10707733}{22296455} a^{9} + \frac{1314787}{22296455} a^{8} - \frac{5486781}{44592910} a^{7} - \frac{6792592}{22296455} a^{6} + \frac{4913333}{22296455} a^{5} - \frac{11602271}{44592910} a^{4} + \frac{27107}{4459291} a^{3} + \frac{2425913}{22296455} a^{2} + \frac{2255155}{8918582} a + \frac{2266902}{22296455}$, $\frac{1}{89185820} a^{14} + \frac{1947607}{22296455} a^{12} + \frac{10790849}{89185820} a^{11} + \frac{1320174}{22296455} a^{10} + \frac{6031591}{22296455} a^{9} - \frac{8891647}{89185820} a^{8} - \frac{3042516}{22296455} a^{7} - \frac{4205852}{22296455} a^{6} - \frac{33375511}{89185820} a^{5} + \frac{7739371}{22296455} a^{4} - \frac{5286086}{22296455} a^{3} - \frac{2564891}{17837164} a^{2} - \frac{10313168}{22296455} a + \frac{909741}{22296455}$, $\frac{1}{891858200} a^{15} - \frac{1}{222964550} a^{13} + \frac{79492849}{891858200} a^{12} + \frac{62610347}{222964550} a^{11} + \frac{71830871}{222964550} a^{10} - \frac{286329959}{891858200} a^{9} + \frac{34359541}{111482275} a^{8} + \frac{94672601}{222964550} a^{7} - \frac{253350343}{891858200} a^{6} + \frac{50103169}{111482275} a^{5} + \frac{82950927}{222964550} a^{4} - \frac{4676147}{178371640} a^{3} - \frac{27148281}{222964550} a^{2} + \frac{60072881}{222964550} a - \frac{3933591}{111482275}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{764002}{22296455} a^{15} + \frac{3438009}{89185820} a^{14} + \frac{4202011}{22296455} a^{13} - \frac{9938089}{22296455} a^{12} - \frac{72962191}{89185820} a^{11} - \frac{61884162}{22296455} a^{10} + \frac{40492106}{4459291} a^{9} + \frac{160822421}{17837164} a^{8} - \frac{310650691}{4459291} a^{7} + \frac{40492106}{4459291} a^{6} - \frac{482467263}{89185820} a^{5} + \frac{53862141}{22296455} a^{4} - \frac{35908094}{22296455} a^{3} - \frac{1451591}{89185820} a^{2} - \frac{9168024}{22296455} a + \frac{3056008}{22296455} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39750.2370823 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $41$ | 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |