Normalized defining polynomial
\( x^{16} - 2 x^{15} + 13 x^{14} - 90 x^{13} + 230 x^{12} - 568 x^{11} + 1529 x^{10} - 1080 x^{9} - 4251 x^{8} + 7280 x^{7} + 2021 x^{6} - 7456 x^{5} - 3460 x^{4} + 2490 x^{3} + 13617 x^{2} - 10314 x + 5751 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19456426971136000000000000=2^{24}\cdot 5^{12}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{18} a^{6} - \frac{4}{9} a^{5} - \frac{5}{18} a^{4} + \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{234} a^{13} - \frac{1}{117} a^{12} - \frac{11}{234} a^{11} - \frac{11}{234} a^{10} - \frac{23}{234} a^{9} + \frac{5}{234} a^{8} - \frac{5}{78} a^{7} - \frac{14}{117} a^{6} - \frac{5}{234} a^{5} - \frac{11}{39} a^{4} + \frac{19}{117} a^{3} - \frac{7}{78} a^{2} - \frac{1}{26} a + \frac{5}{13}$, $\frac{1}{702} a^{14} - \frac{1}{351} a^{12} - \frac{7}{702} a^{11} - \frac{1}{117} a^{10} + \frac{25}{351} a^{9} + \frac{10}{117} a^{8} - \frac{5}{78} a^{7} - \frac{8}{117} a^{6} - \frac{155}{351} a^{5} + \frac{25}{234} a^{4} - \frac{283}{702} a^{3} - \frac{23}{78} a^{2} - \frac{5}{78} a + \frac{11}{26}$, $\frac{1}{5486983160060120973396246} a^{15} + \frac{1670627999844904184699}{2743491580030060486698123} a^{14} - \frac{487305844461224641559}{5486983160060120973396246} a^{13} - \frac{11477427181665420112753}{914497193343353495566041} a^{12} + \frac{243851803441490865441623}{5486983160060120973396246} a^{11} + \frac{98607769701499776706909}{2743491580030060486698123} a^{10} - \frac{21222615741778617535865}{2743491580030060486698123} a^{9} - \frac{4890693558783279130315}{1828994386686706991132082} a^{8} + \frac{133757108823767838450481}{914497193343353495566041} a^{7} - \frac{450888727127656484348317}{5486983160060120973396246} a^{6} - \frac{11554630529387784419908}{38640726479296626573213} a^{5} + \frac{731298403860002545398472}{2743491580030060486698123} a^{4} - \frac{1489408749972705872967811}{5486983160060120973396246} a^{3} - \frac{17111482477598312910100}{70345937949488730428157} a^{2} + \frac{247495018985363692424267}{609664795562235663710694} a - \frac{40151624588132042023}{220175079654111832326}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 91329.0333046 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T34):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), 4.4.328000.1, 4.4.5125.1, 4.0.65600.2, \(\Q(\sqrt{2}, \sqrt{5})\), 4.0.65600.5, 8.0.4303360000.3, 8.8.107584000000.4, 8.0.107584000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |