Normalized defining polynomial
\( x^{16} - 20 x^{14} + 2637 x^{12} + 13224 x^{10} + 1792727 x^{8} - 27766746 x^{6} + 5837598720 x^{4} + 50079521052 x^{2} + 432808725924 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1936052704382448567172058182790309478400000000=2^{38}\cdot 5^{8}\cdot 89^{4}\cdot 130201^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $676.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 89, 130201$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{2}{9} a^{8} + \frac{1}{3} a^{4} - \frac{1}{9} a^{2}$, $\frac{1}{27} a^{11} - \frac{2}{27} a^{9} + \frac{1}{3} a^{7} - \frac{2}{9} a^{5} + \frac{8}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{162} a^{12} - \frac{1}{81} a^{10} + \frac{1}{18} a^{8} - \frac{10}{27} a^{6} - \frac{73}{162} a^{4} + \frac{2}{9} a^{2}$, $\frac{1}{15066} a^{13} - \frac{64}{7533} a^{11} + \frac{5}{54} a^{9} - \frac{307}{2511} a^{7} + \frac{2951}{15066} a^{5} - \frac{5}{31} a^{3} - \frac{6}{31} a$, $\frac{1}{21000980731084342579618643175333516} a^{14} - \frac{24308317890615637993007114408647}{10500490365542171289809321587666758} a^{12} - \frac{56725651266548533987649615777}{1475928085676037850841144365404} a^{10} - \frac{1203373432874796640980415981079689}{3500163455180723763269773862555586} a^{8} + \frac{6862810873719726306438919658220653}{21000980731084342579618643175333516} a^{6} - \frac{195545335515541475067834491356321}{583360575863453960544962310425931} a^{4} + \frac{58129727707510882822873644655799}{129635683525211991232213846761318} a^{2} + \frac{31821541120143970533404933906}{232322013486042995039809761221}$, $\frac{1}{8253385427316146633790126767906071788} a^{15} + \frac{9146052051374553292725491207177}{4126692713658073316895063383953035894} a^{13} - \frac{793311755312446852835886124328893}{53943695603373507410392985411150796} a^{11} - \frac{91818716216997978512297894867240971}{1375564237886024438965021127984345298} a^{9} + \frac{3348778732636344387246876124499555177}{8253385427316146633790126767906071788} a^{7} - \frac{65297516920614967674108445209988604}{229260706314337406494170187997390883} a^{5} + \frac{4801680599065536755545709349266177}{50946823625408312554260041777197974} a^{3} + \frac{1316858352159671986992018040506830}{2830379090300461808570002320955443} a$
Class group and class number
$C_{2}\times C_{129656}$, which has order $259312$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52031774306.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 124 conjugacy class representatives for t16n1605 are not computed |
| Character table for t16n1605 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, 8.0.85938669744845440000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.18.47 | $x^{8} + 4 x^{7} + 2 x^{6} + 8 x^{5} + 2 x^{4} + 28$ | $4$ | $2$ | $18$ | $(C_4^2 : C_2):C_2$ | $[2, 2, 3, 7/2, 7/2]^{2}$ |
| 2.8.20.37 | $x^{8} + 14 x^{4} + 8 x^{3} + 20$ | $4$ | $2$ | $20$ | $(C_4^2 : C_2):C_2$ | $[2, 2, 3, 7/2, 7/2]^{2}$ | |
| 5 | Data not computed | ||||||
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 130201 | Data not computed | ||||||