Normalized defining polynomial
\( x^{16} - 2 x^{15} + 24 x^{13} + 68 x^{12} - 27 x^{11} + 120 x^{10} + 1216 x^{9} + 1120 x^{8} - 486 x^{7} + \cdots + 81 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(1935020402262940309416009\)
\(\medspace = 3^{6}\cdot 61^{12}\)
|
| |
| Root discriminant: | \(32.95\) |
| |
| Galois root discriminant: | $3^{1/2}61^{3/4}\approx 37.80576266511387$ | ||
| Ramified primes: |
\(3\), \(61\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 4.0.226981.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}$, $\frac{1}{15}a^{13}-\frac{1}{15}a^{12}-\frac{2}{15}a^{11}-\frac{2}{5}a^{10}-\frac{7}{15}a^{9}+\frac{1}{3}a^{8}+\frac{2}{5}a^{7}-\frac{1}{3}a^{6}-\frac{1}{15}a^{5}+\frac{4}{15}a^{4}+\frac{4}{15}a^{3}-\frac{2}{15}a^{2}-\frac{2}{5}$, $\frac{1}{45}a^{14}+\frac{1}{45}a^{13}+\frac{2}{15}a^{12}-\frac{4}{45}a^{10}+\frac{2}{15}a^{9}-\frac{1}{5}a^{8}-\frac{8}{45}a^{7}-\frac{11}{45}a^{6}-\frac{1}{15}a^{5}-\frac{8}{45}a^{4}-\frac{1}{5}a^{3}+\frac{7}{15}a^{2}+\frac{1}{5}a+\frac{2}{5}$, $\frac{1}{99\cdots 25}a^{15}+\frac{51\cdots 29}{99\cdots 25}a^{14}-\frac{26\cdots 97}{33\cdots 75}a^{13}-\frac{16\cdots 89}{33\cdots 75}a^{12}-\frac{65\cdots 44}{99\cdots 25}a^{11}+\frac{14\cdots 73}{33\cdots 75}a^{10}-\frac{33\cdots 67}{33\cdots 75}a^{9}-\frac{66\cdots 79}{19\cdots 65}a^{8}-\frac{39\cdots 08}{19\cdots 65}a^{7}-\frac{87\cdots 87}{33\cdots 75}a^{6}-\frac{27\cdots 27}{99\cdots 25}a^{5}-\frac{83\cdots 92}{11\cdots 25}a^{4}-\frac{23\cdots 39}{11\cdots 25}a^{3}+\frac{26\cdots 93}{11\cdots 25}a^{2}-\frac{23\cdots 37}{22\cdots 85}a-\frac{50\cdots 43}{36\cdots 75}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}$, which has order $3$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{26\cdots 89}{99\cdots 25}a^{15}-\frac{76\cdots 64}{99\cdots 25}a^{14}+\frac{17\cdots 42}{33\cdots 75}a^{13}+\frac{20\cdots 74}{33\cdots 75}a^{12}+\frac{12\cdots 69}{99\cdots 25}a^{11}-\frac{71\cdots 33}{33\cdots 75}a^{10}+\frac{13\cdots 67}{33\cdots 75}a^{9}+\frac{11\cdots 07}{39\cdots 13}a^{8}+\frac{73\cdots 59}{19\cdots 65}a^{7}-\frac{10\cdots 03}{33\cdots 75}a^{6}+\frac{59\cdots 12}{99\cdots 25}a^{5}+\frac{87\cdots 72}{11\cdots 25}a^{4}-\frac{31\cdots 81}{11\cdots 25}a^{3}-\frac{35\cdots 88}{11\cdots 25}a^{2}+\frac{42\cdots 63}{22\cdots 85}a+\frac{12\cdots 83}{36\cdots 75}$, $\frac{20\cdots 89}{99\cdots 25}a^{15}-\frac{57\cdots 49}{99\cdots 25}a^{14}+\frac{12\cdots 32}{33\cdots 75}a^{13}+\frac{16\cdots 94}{33\cdots 75}a^{12}+\frac{10\cdots 59}{99\cdots 25}a^{11}-\frac{52\cdots 13}{33\cdots 75}a^{10}+\frac{10\cdots 02}{33\cdots 75}a^{9}+\frac{45\cdots 53}{19\cdots 65}a^{8}+\frac{92\cdots 56}{19\cdots 65}a^{7}-\frac{81\cdots 83}{33\cdots 75}a^{6}+\frac{43\cdots 62}{99\cdots 25}a^{5}+\frac{74\cdots 58}{12\cdots 25}a^{4}-\frac{24\cdots 91}{11\cdots 25}a^{3}-\frac{29\cdots 18}{11\cdots 25}a^{2}+\frac{31\cdots 16}{22\cdots 85}a-\frac{13\cdots 47}{36\cdots 75}$, $\frac{57\cdots 34}{99\cdots 25}a^{15}+\frac{95\cdots 46}{99\cdots 25}a^{14}-\frac{16\cdots 68}{33\cdots 75}a^{13}+\frac{56\cdots 84}{33\cdots 75}a^{12}+\frac{84\cdots 19}{99\cdots 25}a^{11}+\frac{36\cdots 42}{33\cdots 75}a^{10}-\frac{61\cdots 03}{33\cdots 75}a^{9}+\frac{20\cdots 76}{19\cdots 65}a^{8}+\frac{58\cdots 93}{19\cdots 65}a^{7}+\frac{39\cdots 22}{33\cdots 75}a^{6}+\frac{35\cdots 72}{99\cdots 25}a^{5}+\frac{22\cdots 19}{36\cdots 75}a^{4}+\frac{77\cdots 69}{11\cdots 25}a^{3}+\frac{41\cdots 12}{11\cdots 25}a^{2}+\frac{38\cdots 09}{22\cdots 85}a-\frac{20\cdots 87}{36\cdots 75}$, $\frac{26\cdots 98}{99\cdots 25}a^{15}-\frac{39\cdots 23}{99\cdots 25}a^{14}-\frac{11\cdots 06}{33\cdots 75}a^{13}+\frac{21\cdots 93}{33\cdots 75}a^{12}+\frac{21\cdots 58}{99\cdots 25}a^{11}+\frac{19\cdots 94}{33\cdots 75}a^{10}+\frac{74\cdots 69}{33\cdots 75}a^{9}+\frac{13\cdots 94}{39\cdots 13}a^{8}+\frac{90\cdots 98}{19\cdots 65}a^{7}-\frac{20\cdots 46}{33\cdots 75}a^{6}+\frac{26\cdots 84}{99\cdots 25}a^{5}+\frac{15\cdots 04}{11\cdots 25}a^{4}+\frac{11\cdots 58}{11\cdots 25}a^{3}-\frac{13\cdots 91}{11\cdots 25}a^{2}-\frac{12\cdots 64}{22\cdots 85}a-\frac{10\cdots 69}{36\cdots 75}$, $\frac{25\cdots 38}{33\cdots 75}a^{15}-\frac{55\cdots 48}{33\cdots 75}a^{14}-\frac{43\cdots 96}{11\cdots 25}a^{13}+\frac{21\cdots 53}{11\cdots 25}a^{12}+\frac{15\cdots 88}{33\cdots 75}a^{11}-\frac{42\cdots 91}{11\cdots 25}a^{10}+\frac{92\cdots 49}{11\cdots 25}a^{9}+\frac{62\cdots 18}{66\cdots 55}a^{8}+\frac{76\cdots 31}{13\cdots 71}a^{7}-\frac{96\cdots 81}{11\cdots 25}a^{6}+\frac{51\cdots 79}{33\cdots 75}a^{5}+\frac{39\cdots 58}{12\cdots 25}a^{4}-\frac{10\cdots 37}{36\cdots 75}a^{3}-\frac{21\cdots 01}{36\cdots 75}a^{2}+\frac{46\cdots 19}{73\cdots 95}a-\frac{56\cdots 19}{12\cdots 25}$, $\frac{48\cdots 34}{99\cdots 25}a^{15}-\frac{15\cdots 84}{99\cdots 25}a^{14}+\frac{51\cdots 22}{33\cdots 75}a^{13}+\frac{35\cdots 74}{33\cdots 75}a^{12}+\frac{20\cdots 69}{99\cdots 25}a^{11}-\frac{13\cdots 18}{33\cdots 75}a^{10}+\frac{32\cdots 37}{33\cdots 75}a^{9}+\frac{19\cdots 03}{39\cdots 13}a^{8}-\frac{13\cdots 69}{19\cdots 65}a^{7}-\frac{10\cdots 43}{33\cdots 75}a^{6}+\frac{12\cdots 12}{99\cdots 25}a^{5}+\frac{77\cdots 67}{11\cdots 25}a^{4}-\frac{20\cdots 51}{11\cdots 25}a^{3}+\frac{16\cdots 67}{11\cdots 25}a^{2}+\frac{10\cdots 83}{22\cdots 85}a+\frac{85\cdots 43}{36\cdots 75}$, $\frac{75\cdots 11}{99\cdots 25}a^{15}-\frac{10\cdots 11}{99\cdots 25}a^{14}-\frac{24\cdots 62}{33\cdots 75}a^{13}+\frac{59\cdots 46}{33\cdots 75}a^{12}+\frac{62\cdots 26}{99\cdots 25}a^{11}+\frac{41\cdots 53}{33\cdots 75}a^{10}+\frac{29\cdots 73}{33\cdots 75}a^{9}+\frac{38\cdots 05}{39\cdots 13}a^{8}+\frac{27\cdots 24}{19\cdots 65}a^{7}+\frac{95\cdots 78}{33\cdots 75}a^{6}+\frac{11\cdots 48}{99\cdots 25}a^{5}+\frac{48\cdots 27}{12\cdots 25}a^{4}+\frac{41\cdots 71}{11\cdots 25}a^{3}+\frac{15\cdots 43}{11\cdots 25}a^{2}+\frac{72\cdots 42}{22\cdots 85}a+\frac{31\cdots 72}{36\cdots 75}$
|
| |
| Regulator: | \( 135710.355692 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 135710.355692 \cdot 3}{2\cdot\sqrt{1935020402262940309416009}}\cr\approx \mathstrut & 0.355467926147 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.0.226981.1, 4.2.11163.1, 4.2.680943.1, 8.2.373837707.1, 8.2.1391050107747.2, 8.0.463683369249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | 16.4.17415183620366462784744081.2 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/5.2.0.1}{2} }^{8}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(61\)
| 61.2.4.6a1.2 | $x^{8} + 240 x^{7} + 21608 x^{6} + 865440 x^{5} + 13046424 x^{4} + 1730880 x^{3} + 86432 x^{2} + 1920 x + 77$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
| 61.2.4.6a1.2 | $x^{8} + 240 x^{7} + 21608 x^{6} + 865440 x^{5} + 13046424 x^{4} + 1730880 x^{3} + 86432 x^{2} + 1920 x + 77$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |