Normalized defining polynomial
\( x^{16} - 4 x^{15} - 8 x^{14} - x^{13} + 88 x^{12} + 96 x^{11} + 545 x^{10} + 711 x^{9} - 416 x^{8} + 337 x^{7} + 10 x^{6} + 1822 x^{5} + 16660 x^{4} + 22722 x^{3} + 34983 x^{2} + 30240 x + 14175 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19324652256549748184809636393=7^{7}\cdot 31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{11} + \frac{2}{15} a^{10} - \frac{2}{15} a^{9} - \frac{1}{15} a^{8} + \frac{1}{15} a^{7} - \frac{7}{15} a^{6} - \frac{1}{3} a^{5} - \frac{7}{15} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{135} a^{12} - \frac{2}{135} a^{11} + \frac{2}{27} a^{10} - \frac{13}{135} a^{9} + \frac{1}{9} a^{8} + \frac{14}{135} a^{7} + \frac{7}{15} a^{6} - \frac{7}{135} a^{5} - \frac{64}{135} a^{4} - \frac{8}{135} a^{3} - \frac{13}{135} a^{2} + \frac{11}{45} a - \frac{1}{3}$, $\frac{1}{945} a^{13} + \frac{1}{315} a^{12} + \frac{1}{105} a^{11} + \frac{11}{189} a^{10} + \frac{67}{945} a^{9} - \frac{20}{189} a^{8} + \frac{97}{945} a^{7} + \frac{40}{189} a^{6} - \frac{12}{35} a^{5} + \frac{239}{945} a^{4} + \frac{199}{945} a^{3} - \frac{131}{945} a^{2} - \frac{8}{45} a + \frac{1}{3}$, $\frac{1}{61425} a^{14} + \frac{1}{4725} a^{13} + \frac{41}{20475} a^{12} + \frac{197}{12285} a^{11} + \frac{9143}{61425} a^{10} + \frac{418}{6825} a^{9} + \frac{89}{2925} a^{8} - \frac{1087}{20475} a^{7} - \frac{23083}{61425} a^{6} + \frac{17831}{61425} a^{5} + \frac{8899}{20475} a^{4} + \frac{15551}{61425} a^{3} - \frac{24998}{61425} a^{2} - \frac{989}{2925} a + \frac{46}{195}$, $\frac{1}{1824896133739382947425} a^{15} - \frac{9600411283903177}{1824896133739382947425} a^{14} + \frac{605208075256788958}{1824896133739382947425} a^{13} - \frac{269489981070317498}{364979226747876589485} a^{12} + \frac{22514865847046749483}{1824896133739382947425} a^{11} + \frac{41721402166316967884}{608298711246460982475} a^{10} + \frac{276643537642922017424}{1824896133739382947425} a^{9} - \frac{6714319442353024}{4573674520650082575} a^{8} - \frac{860457737712301544}{5944287080584309275} a^{7} + \frac{88511080950266214406}{1824896133739382947425} a^{6} - \frac{758598602080052775698}{1824896133739382947425} a^{5} - \frac{83851201327266275564}{1824896133739382947425} a^{4} - \frac{711173534448722302493}{1824896133739382947425} a^{3} - \frac{73560077805163974758}{608298711246460982475} a^{2} + \frac{19819064384244323}{340783591734712035} a - \frac{40956383973722701}{128740467988668991}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118753618.963 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 4.0.208537.1, 8.0.9436826640073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16$ | $16$ | R | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31 | Data not computed | ||||||