Normalized defining polynomial
\( x^{16} - 2 x^{15} + 24 x^{14} - 32 x^{13} + 183 x^{12} - 117 x^{11} + 396 x^{10} - 181 x^{9} - 912 x^{8} + 513 x^{7} - 3546 x^{6} + 2529 x^{5} - 187 x^{4} + 1706 x^{3} + 15096 x^{2} - 9291 x + 48151 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1929403689792242431640625=3^{12}\cdot 5^{14}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{3}{11} a^{13} + \frac{5}{11} a^{11} + \frac{2}{11} a^{10} - \frac{1}{11} a^{9} + \frac{2}{11} a^{8} - \frac{2}{11} a^{7} + \frac{4}{11} a^{6} + \frac{2}{11} a^{5} - \frac{4}{11} a^{4} + \frac{4}{11} a^{3} + \frac{5}{11} a^{2} - \frac{2}{11} a + \frac{3}{11}$, $\frac{1}{163716934823983705957033413481113431} a^{15} - \frac{4901717723355310830909909706754765}{163716934823983705957033413481113431} a^{14} + \frac{16816806431252395498875536321456511}{163716934823983705957033413481113431} a^{13} + \frac{63708225384737385434317684983517493}{163716934823983705957033413481113431} a^{12} + \frac{78885178012535503821465031784676846}{163716934823983705957033413481113431} a^{11} - \frac{42292832285622196330042619384996}{513219231423146413658411954486249} a^{10} - \frac{50742254055393067388038387768286103}{163716934823983705957033413481113431} a^{9} - \frac{36584063614633894992035651479613}{5645411545654610550242531499348739} a^{8} + \frac{38361337299283193872655679801326735}{163716934823983705957033413481113431} a^{7} + \frac{15858682758840706188602098101701757}{163716934823983705957033413481113431} a^{6} - \frac{25452829778756324379294202676553905}{163716934823983705957033413481113431} a^{5} + \frac{76541406062337325766435325825793209}{163716934823983705957033413481113431} a^{4} - \frac{80135555975701164710018689730745527}{163716934823983705957033413481113431} a^{3} + \frac{73028636432580674062554750538212434}{163716934823983705957033413481113431} a^{2} + \frac{35355266840193783257183449845788150}{163716934823983705957033413481113431} a - \frac{7554416834559473221892281572469865}{163716934823983705957033413481113431}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6317.46461709 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 4.4.32625.1, 4.4.725.1, 8.0.47897578125.1 x2, 8.8.1064390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |