Normalized defining polynomial
\( x^{16} + 44 x^{14} + 570 x^{12} + 3210 x^{10} + 80135 x^{8} + 1029206 x^{6} + 2258879 x^{4} + 3204625 x^{2} + 600625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19244198650569257148820544058721=31^{8}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{50} a^{8} - \frac{2}{25} a^{6} + \frac{19}{50} a^{4} - \frac{1}{50} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{50} a^{9} - \frac{2}{25} a^{7} - \frac{1}{50} a^{5} - \frac{1}{50} a^{3} - \frac{1}{2} a^{2} - \frac{1}{10} a$, $\frac{1}{50} a^{10} + \frac{3}{50} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{21}{50} a^{2}$, $\frac{1}{250} a^{11} + \frac{1}{125} a^{9} - \frac{1}{50} a^{7} + \frac{13}{250} a^{5} - \frac{1}{2} a^{4} + \frac{69}{250} a^{3} + \frac{1}{5} a$, $\frac{1}{1250} a^{12} + \frac{1}{625} a^{10} - \frac{1}{250} a^{8} - \frac{87}{1250} a^{6} - \frac{1}{10} a^{5} + \frac{569}{1250} a^{4} - \frac{12}{25} a^{2} - \frac{2}{5} a$, $\frac{1}{1250} a^{13} + \frac{1}{625} a^{11} - \frac{1}{250} a^{9} - \frac{87}{1250} a^{7} - \frac{1}{10} a^{6} + \frac{69}{1250} a^{5} - \frac{12}{25} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{1760099123915743750} a^{14} + \frac{68551133888233}{1760099123915743750} a^{12} + \frac{10964689052109607}{1760099123915743750} a^{10} - \frac{3587669450752317}{1760099123915743750} a^{8} - \frac{1}{10} a^{7} - \frac{1903158962778819}{28388695547028125} a^{6} - \frac{1}{10} a^{5} - \frac{58551866922511918}{880049561957871875} a^{4} - \frac{2}{5} a^{3} - \frac{3414431643328181}{14080792991325950} a^{2} + \frac{1}{10} a + \frac{7458268704211}{90843825750490}$, $\frac{1}{1760099123915743750} a^{15} + \frac{68551133888233}{1760099123915743750} a^{13} - \frac{3116103939216343}{1760099123915743750} a^{11} + \frac{1726363522455329}{880049561957871875} a^{9} + \frac{2639032324745681}{28388695547028125} a^{7} - \frac{1}{10} a^{6} + \frac{16663799572572689}{1760099123915743750} a^{5} - \frac{1}{2} a^{4} - \frac{510027103264661}{35201982478314875} a^{3} + \frac{1}{10} a^{2} - \frac{10710496445887}{90843825750490} a - \frac{1}{2}$
Class group and class number
$C_{2}\times C_{2}\times C_{60}$, which has order $240$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 83086476.1699 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-1271}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{-31}, \sqrt{41})\), 4.2.52111.1 x2, 4.0.39401.1 x2, 8.0.2609649624481.2, 8.2.141510355443631.4 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |