Normalized defining polynomial
\( x^{16} - 2 x^{15} - 27 x^{14} - 71 x^{13} + 80 x^{12} + 3369 x^{11} + 7028 x^{10} + 5649 x^{9} + 39799 x^{8} - 160713 x^{7} + 1470441 x^{6} - 4148370 x^{5} + 14735693 x^{4} - 14162372 x^{3} + 39990424 x^{2} - 12569079 x + 26924347 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19244198650569257148820544058721=31^{8}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{10} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{10} a^{4} + \frac{1}{10} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{11} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} + \frac{1}{10} a^{5} + \frac{1}{10} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{10} + \frac{1}{20} a^{8} + \frac{1}{10} a^{7} - \frac{1}{4} a^{6} + \frac{1}{5} a^{5} - \frac{1}{2} a^{4} + \frac{1}{5} a^{3} - \frac{1}{10} a^{2} - \frac{9}{20}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{11} + \frac{1}{20} a^{9} + \frac{1}{10} a^{8} - \frac{1}{4} a^{7} + \frac{1}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{5} a^{4} - \frac{1}{10} a^{3} - \frac{9}{20} a$, $\frac{1}{100} a^{14} + \frac{1}{100} a^{13} + \frac{3}{100} a^{11} + \frac{1}{25} a^{10} - \frac{7}{100} a^{9} - \frac{11}{50} a^{8} + \frac{3}{20} a^{7} - \frac{19}{100} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{3}{10} a^{3} + \frac{3}{100} a^{2} - \frac{3}{100} a - \frac{3}{100}$, $\frac{1}{22041046042676974819724317555873481310613892913947500} a^{15} - \frac{17167722058421390698221810870285194570367363425362}{5510261510669243704931079388968370327653473228486875} a^{14} + \frac{439724460442770485251753015944179137455482469517281}{22041046042676974819724317555873481310613892913947500} a^{13} + \frac{377729659592158861120436744846191857226308852680353}{22041046042676974819724317555873481310613892913947500} a^{12} + \frac{842770018857529293878762084471191041044914988527267}{22041046042676974819724317555873481310613892913947500} a^{11} - \frac{860817076340860607606609538503680806704459145674463}{22041046042676974819724317555873481310613892913947500} a^{10} - \frac{2040823537845537518524725457416498546261265766191849}{22041046042676974819724317555873481310613892913947500} a^{9} + \frac{3996855768359285100011654661963508965391199053653803}{22041046042676974819724317555873481310613892913947500} a^{8} + \frac{281492379384874549675408049003028571698177496215893}{11020523021338487409862158777936740655306946456973750} a^{7} + \frac{4716102026072352652066055084181555004067459898418231}{22041046042676974819724317555873481310613892913947500} a^{6} + \frac{126349349875160481371157778211401736848086984574927}{1102052302133848740986215877793674065530694645697375} a^{5} + \frac{196632783848174713448832373337646478629945198691477}{1102052302133848740986215877793674065530694645697375} a^{4} + \frac{48226858393049285657287307118818642664039290592649}{111883482450136928018905165258241021881288796517500} a^{3} + \frac{865245943019461920114399615561958641289982760721319}{2204104604267697481972431755587348131061389291394750} a^{2} + \frac{2586083276801199167951045212023984296488421474503546}{5510261510669243704931079388968370327653473228486875} a - \frac{8164701460023313076058330070713457434381364693469393}{22041046042676974819724317555873481310613892913947500}$
Class group and class number
$C_{2}\times C_{2}\times C_{16}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17590199.4078 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.2.52111.1, 4.0.66233081.2, 4.2.2136551.1, 8.4.111337809161.1, 8.0.106995634603721.2, 8.0.4386821018752561.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |