Normalized defining polynomial
\( x^{16} - 3 x^{15} + 23 x^{13} + 123 x^{12} - 54 x^{11} - 860 x^{10} + 607 x^{9} + 202 x^{8} - 17395 x^{7} - 8350 x^{6} + 76302 x^{5} + 96796 x^{4} + 9928 x^{3} + 81135 x^{2} + 214956 x + 122768 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1923911113486862917838536993=47^{8}\cdot 97^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{56} a^{14} + \frac{1}{28} a^{13} + \frac{1}{8} a^{12} + \frac{5}{28} a^{11} - \frac{2}{7} a^{10} - \frac{5}{28} a^{9} - \frac{11}{28} a^{8} + \frac{23}{56} a^{7} + \frac{19}{56} a^{6} + \frac{19}{56} a^{5} + \frac{9}{28} a^{4} + \frac{3}{8} a^{3} - \frac{19}{56} a^{2} + \frac{13}{28} a + \frac{3}{7}$, $\frac{1}{6346963919151015409879959091900156264} a^{15} + \frac{4246924815747340072876169184008103}{3173481959575507704939979545950078132} a^{14} - \frac{51318813209510056050579725755006055}{6346963919151015409879959091900156264} a^{13} - \frac{312089930580171998085915663280216959}{3173481959575507704939979545950078132} a^{12} + \frac{176510217123599690765739694337872061}{3173481959575507704939979545950078132} a^{11} + \frac{22557387652002915135163762382463325}{3173481959575507704939979545950078132} a^{10} + \frac{481868345801217253548923403305684197}{3173481959575507704939979545950078132} a^{9} - \frac{1373244271708267136620613353754772377}{6346963919151015409879959091900156264} a^{8} + \frac{599844024718618388794699768487976551}{6346963919151015409879959091900156264} a^{7} - \frac{516903547482106278369767967651620859}{6346963919151015409879959091900156264} a^{6} + \frac{358027413715605569774979647926440507}{793370489893876926234994886487519533} a^{5} + \frac{978512038397558980737417069256587043}{6346963919151015409879959091900156264} a^{4} - \frac{780749431468237885366491485836612383}{6346963919151015409879959091900156264} a^{3} + \frac{284233254881267158804847065469469211}{1586740979787753852469989772975039066} a^{2} + \frac{289507191142613524217146619564841923}{3173481959575507704939979545950078132} a + \frac{207262658139605035586710547874438837}{793370489893876926234994886487519533}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2921943.17435 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 4.0.214273.1, 8.0.4453553097313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.7.2 | $x^{8} - 2425$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |