Normalized defining polynomial
\( x^{16} - 148 x^{14} - 200 x^{13} + 22422 x^{12} + 46936 x^{11} - 1108984 x^{10} - 2576672 x^{9} + 59042839 x^{8} + 33297712 x^{7} - 2203368876 x^{6} - 1557349288 x^{5} + 56424774224 x^{4} - 35048106120 x^{3} - 1157432693384 x^{2} + 1851433282320 x + 13920305159422 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1922126231168301760890646394255238227820544=2^{50}\cdot 17^{4}\cdot 103^{4}\cdot 3671^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $439.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 103, 3671$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{51} a^{9} + \frac{2}{51} a^{8} + \frac{25}{51} a^{7} - \frac{20}{51} a^{6} + \frac{1}{3} a^{5} - \frac{7}{51} a^{4} + \frac{19}{51} a^{3} - \frac{13}{51} a^{2} - \frac{1}{51} a - \frac{1}{3}$, $\frac{1}{51} a^{10} + \frac{4}{51} a^{8} - \frac{19}{51} a^{7} - \frac{11}{51} a^{6} - \frac{8}{17} a^{5} + \frac{16}{51} a^{4} + \frac{8}{51} a^{2} - \frac{5}{17} a$, $\frac{1}{51} a^{11} + \frac{7}{51} a^{8} - \frac{3}{17} a^{7} - \frac{4}{17} a^{6} + \frac{16}{51} a^{5} + \frac{11}{51} a^{4} - \frac{1}{3} a^{3} + \frac{20}{51} a^{2} + \frac{4}{51} a - \frac{1}{3}$, $\frac{1}{204} a^{12} - \frac{23}{204} a^{8} + \frac{1}{3} a^{7} - \frac{4}{17} a^{6} + \frac{8}{17} a^{5} - \frac{35}{102} a^{4} + \frac{10}{51} a^{3} + \frac{11}{51} a^{2} + \frac{23}{51} a - \frac{1}{6}$, $\frac{1}{6936} a^{13} + \frac{1}{2312} a^{12} - \frac{7}{1734} a^{11} - \frac{1}{578} a^{10} - \frac{47}{6936} a^{9} - \frac{157}{6936} a^{8} + \frac{173}{578} a^{7} + \frac{259}{1734} a^{6} - \frac{489}{1156} a^{5} + \frac{517}{1156} a^{4} + \frac{380}{867} a^{3} + \frac{2}{867} a^{2} - \frac{853}{3468} a - \frac{83}{204}$, $\frac{1}{5007022104} a^{14} - \frac{7069}{1669007368} a^{13} + \frac{2424467}{2503511052} a^{12} - \frac{984583}{1251755526} a^{11} - \frac{1203263}{294530712} a^{10} - \frac{6287719}{5007022104} a^{9} + \frac{323509411}{2503511052} a^{8} - \frac{1089971}{178822218} a^{7} - \frac{1223441983}{2503511052} a^{6} - \frac{728905439}{2503511052} a^{5} + \frac{14892517}{1251755526} a^{4} - \frac{83104853}{625877763} a^{3} - \frac{23510843}{357644436} a^{2} + \frac{1085859155}{2503511052} a - \frac{9123609}{24544226}$, $\frac{1}{3364985398053353809674681247113865874347493468109682276962913306728} a^{15} + \frac{6272407930017913745047044512205171568541149428732339289}{65980105844183408032836887198311095575441048394307495626723790328} a^{14} - \frac{109037784088424307096987000616369719370828671492380637924170869}{1682492699026676904837340623556932937173746734054841138481456653364} a^{13} - \frac{1677670926610034953407621115862584694334516374586316939008419773}{1682492699026676904837340623556932937173746734054841138481456653364} a^{12} + \frac{19917467577717573877320600173013006109137811279898842409110487593}{3364985398053353809674681247113865874347493468109682276962913306728} a^{11} - \frac{1478066351115632040430959507664153714528184049095704046937887241}{160237399907302562365461011767326946397499688957603917950614919368} a^{10} + \frac{1359106263447948093842210637017651784370871175178868314441640637}{560830899675558968279113541185644312391248911351613712827152217788} a^{9} - \frac{63074136074022917797509810227345420865644151555141008864405344291}{560830899675558968279113541185644312391248911351613712827152217788} a^{8} - \frac{427108211873142367853315027400039578042129525006261712528088768199}{1682492699026676904837340623556932937173746734054841138481456653364} a^{7} + \frac{319120549059277341768696778715770777867206466294543666066925702467}{1682492699026676904837340623556932937173746734054841138481456653364} a^{6} + \frac{249985549144843795980627478643983570061562179138829774192121568785}{841246349513338452418670311778466468586873367027420569240728326682} a^{5} - \frac{88120344983442223371028274010466080863439163948525620820353244603}{841246349513338452418670311778466468586873367027420569240728326682} a^{4} - \frac{609070185856874633086033449466692176139998702304435691989643017085}{1682492699026676904837340623556932937173746734054841138481456653364} a^{3} - \frac{744231650855177879394031259251802983849715857858243981109269459439}{1682492699026676904837340623556932937173746734054841138481456653364} a^{2} - \frac{413237791248839934051761488093917344500931028114928966379404598293}{841246349513338452418670311778466468586873367027420569240728326682} a + \frac{5940377094317919791007021862537178650050697363526402725401408571}{16495026461045852008209221799577773893860262098576873906680947582}$
Class group and class number
$C_{2}\times C_{6}\times C_{19596}$, which has order $235152$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5714559607.36 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.0.24199232.1, 4.0.774375424.1, 8.0.599657297295179776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.26.4 | $x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $103$ | 103.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 103.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 103.8.4.1 | $x^{8} + 106090 x^{4} - 1092727 x^{2} + 2813772025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3671 | Data not computed | ||||||