Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 146 x^{12} - 148 x^{11} + 40 x^{10} + 108 x^{9} - 101 x^{8} - 156 x^{7} + 520 x^{6} - 716 x^{5} + 626 x^{4} - 372 x^{3} + 128 x^{2} - 16 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1913187600000000000000=2^{16}\cdot 3^{14}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{56} a^{12} - \frac{3}{28} a^{11} - \frac{1}{56} a^{10} + \frac{1}{14} a^{9} - \frac{1}{14} a^{8} + \frac{5}{28} a^{7} + \frac{3}{56} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{13}{28} a^{3} + \frac{3}{56} a^{2} + \frac{19}{56}$, $\frac{1}{56} a^{13} + \frac{5}{56} a^{11} - \frac{1}{28} a^{10} + \frac{3}{28} a^{9} - \frac{1}{8} a^{7} - \frac{1}{28} a^{6} - \frac{1}{4} a^{5} + \frac{1}{7} a^{4} + \frac{1}{56} a^{3} - \frac{5}{28} a^{2} + \frac{5}{56} a + \frac{2}{7}$, $\frac{1}{56} a^{14} - \frac{3}{56} a^{10} - \frac{3}{28} a^{9} - \frac{1}{56} a^{8} + \frac{1}{14} a^{7} + \frac{13}{56} a^{6} + \frac{5}{28} a^{5} + \frac{3}{56} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} - \frac{13}{28} a + \frac{3}{56}$, $\frac{1}{20104} a^{15} + \frac{43}{5026} a^{14} + \frac{59}{10052} a^{13} - \frac{25}{20104} a^{12} + \frac{1031}{20104} a^{11} + \frac{1983}{20104} a^{10} - \frac{943}{20104} a^{9} + \frac{267}{10052} a^{8} - \frac{193}{20104} a^{7} - \frac{1509}{20104} a^{6} + \frac{4253}{20104} a^{5} + \frac{795}{10052} a^{4} + \frac{1249}{10052} a^{3} - \frac{4149}{20104} a^{2} - \frac{3921}{20104} a + \frac{1075}{20104}$
Class group and class number
$C_{8}$, which has order $8$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4323}{10052} a^{15} - \frac{64845}{20104} a^{14} + \frac{245865}{20104} a^{13} - \frac{76830}{2513} a^{12} + \frac{994845}{20104} a^{11} - \frac{874269}{20104} a^{10} + \frac{4990}{2513} a^{9} + \frac{124605}{2872} a^{8} - \frac{485055}{20104} a^{7} - \frac{1461525}{20104} a^{6} + \frac{134643}{718} a^{5} - \frac{4588785}{20104} a^{4} + \frac{3645195}{20104} a^{3} - \frac{480765}{5026} a^{2} + \frac{512415}{20104} a - \frac{38473}{20104} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4515.69639126 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T35):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-1}) \), 4.2.54000.1 x2, 4.0.13500.1 x2, \(\Q(i, \sqrt{15})\), 8.2.43740000000.1 x2, 8.2.43740000000.2 x2, 8.0.2916000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.8.7.3 | $x^{8} + 10$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.3 | $x^{8} + 10$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |