Normalized defining polynomial
\( x^{16} - 2 x^{15} + 3 x^{14} + 62 x^{13} - 91 x^{12} + 84 x^{11} + 1258 x^{10} - 1352 x^{9} + 1686 x^{8} + 8296 x^{7} - 9998 x^{6} + 15372 x^{5} + 20405 x^{4} - 23638 x^{3} + 53511 x^{2} + 24250 x + 15625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(191125675354752187786114569=3^{14}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{6} - \frac{1}{8}$, $\frac{1}{8} a^{7} - \frac{1}{8} a$, $\frac{1}{24} a^{8} - \frac{1}{24} a^{7} + \frac{1}{24} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{5}{24} a^{2} + \frac{5}{24} a - \frac{5}{24}$, $\frac{1}{48} a^{9} - \frac{1}{16} a^{6} - \frac{3}{16} a^{3} - \frac{5}{48}$, $\frac{1}{48} a^{10} - \frac{1}{16} a^{7} - \frac{3}{16} a^{4} - \frac{5}{48} a$, $\frac{1}{192} a^{11} + \frac{1}{192} a^{10} + \frac{1}{192} a^{9} - \frac{1}{64} a^{8} - \frac{1}{64} a^{7} - \frac{1}{64} a^{6} + \frac{5}{64} a^{5} + \frac{5}{64} a^{4} + \frac{5}{64} a^{3} - \frac{77}{192} a^{2} - \frac{77}{192} a - \frac{77}{192}$, $\frac{1}{384} a^{12} - \frac{1}{96} a^{10} - \frac{1}{48} a^{8} - \frac{1}{96} a^{7} - \frac{1}{192} a^{6} + \frac{1}{12} a^{5} - \frac{23}{96} a^{4} - \frac{1}{4} a^{3} - \frac{19}{48} a^{2} + \frac{25}{96} a + \frac{97}{384}$, $\frac{1}{5760} a^{13} - \frac{1}{2880} a^{12} + \frac{1}{960} a^{11} - \frac{7}{2880} a^{10} - \frac{19}{2880} a^{9} - \frac{1}{320} a^{8} + \frac{11}{240} a^{7} - \frac{11}{960} a^{6} + \frac{223}{960} a^{5} - \frac{121}{2880} a^{4} - \frac{397}{2880} a^{3} - \frac{349}{960} a^{2} + \frac{1783}{5760} a + \frac{77}{288}$, $\frac{1}{8939520} a^{14} + \frac{107}{2979840} a^{13} - \frac{1991}{1787904} a^{12} - \frac{4709}{2234880} a^{11} + \frac{511}{148992} a^{10} - \frac{7723}{2234880} a^{9} + \frac{1381}{99328} a^{8} - \frac{88649}{1489920} a^{7} - \frac{12769}{297984} a^{6} + \frac{169213}{2234880} a^{5} + \frac{10841}{148992} a^{4} + \frac{480611}{2234880} a^{3} + \frac{4047901}{8939520} a^{2} - \frac{200377}{2979840} a + \frac{718765}{1787904}$, $\frac{1}{13853350656000} a^{15} - \frac{111559}{4617783552000} a^{14} + \frac{2787901}{4617783552000} a^{13} + \frac{1145916031}{6926675328000} a^{12} + \frac{181047757}{1154445888000} a^{11} + \frac{3492571757}{1154445888000} a^{10} + \frac{52614833429}{6926675328000} a^{9} + \frac{2089031911}{769630592000} a^{8} - \frac{107830571519}{2308891776000} a^{7} - \frac{101584551463}{1731668832000} a^{6} + \frac{2594604443}{11901504000} a^{5} - \frac{14560656469}{1154445888000} a^{4} - \frac{94473090959}{2770670131200} a^{3} + \frac{32735751229}{4617783552000} a^{2} - \frac{1579327292063}{4617783552000} a + \frac{14659877425}{55413402624}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{134851}{3967168000} a^{15} + \frac{171551}{1983584000} a^{14} - \frac{1147217}{5950752000} a^{13} - \frac{22590961}{11901504000} a^{12} + \frac{5901331}{1487688000} a^{11} - \frac{910787}{123974000} a^{10} - \frac{68468629}{1983584000} a^{9} + \frac{60812163}{991792000} a^{8} - \frac{123867609}{991792000} a^{7} - \frac{333709973}{1983584000} a^{6} + \frac{190780031}{495896000} a^{5} - \frac{266921063}{371922000} a^{4} - \frac{371046053}{2380300800} a^{3} + \frac{4067877457}{5950752000} a^{2} - \frac{3255144243}{1983584000} a + \frac{5991625}{31737344} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8934543.27914 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{129}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-43})\), 4.2.49923.2 x2, 4.0.1161.1 x2, 8.0.2492305929.1, 8.2.13824820988163.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $43$ | 43.8.6.2 | $x^{8} + 215 x^{4} + 16641$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 43.8.6.2 | $x^{8} + 215 x^{4} + 16641$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |