Normalized defining polynomial
\( x^{16} - 2 x^{15} + 3 x^{14} - 8 x^{13} + 9 x^{12} - 5 x^{11} + 12 x^{10} - 7 x^{9} - 2 x^{8} - 11 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(189837888276953125\) \(\medspace = 5^{8}\cdot 11^{4}\cdot 29^{3}\cdot 1361\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.02\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}11^{1/2}29^{3/4}1361^{1/2}\approx 3419.077190924994$ | ||
Ramified primes: | \(5\), \(11\), \(29\), \(1361\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{39469}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{106039}a^{15}+\frac{44464}{106039}a^{14}+\frac{39072}{106039}a^{13}+\frac{32568}{106039}a^{12}-\frac{5926}{106039}a^{11}+\frac{1394}{106039}a^{10}-\frac{47199}{106039}a^{9}-\frac{26853}{106039}a^{8}-\frac{2440}{5581}a^{7}-\frac{45611}{106039}a^{6}-\frac{36805}{106039}a^{5}+\frac{34801}{106039}a^{4}+\frac{34145}{106039}a^{3}+\frac{25161}{106039}a^{2}-\frac{8464}{106039}a-\frac{27813}{106039}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{194626}{106039}a^{15}-\frac{310443}{106039}a^{14}+\frac{476421}{106039}a^{13}-\frac{1386203}{106039}a^{12}+\frac{1198956}{106039}a^{11}-\frac{575352}{106039}a^{10}+\frac{2126776}{106039}a^{9}-\frac{371941}{106039}a^{8}-\frac{22474}{5581}a^{7}-\frac{2258420}{106039}a^{6}+\frac{148676}{106039}a^{5}+\frac{786613}{106039}a^{4}+\frac{1419147}{106039}a^{3}-\frac{426429}{106039}a^{2}-\frac{210677}{106039}a-\frac{160105}{106039}$, $\frac{54215}{106039}a^{15}-\frac{74866}{106039}a^{14}+\frac{159455}{106039}a^{13}-\frac{405425}{106039}a^{12}+\frac{338197}{106039}a^{11}-\frac{348214}{106039}a^{10}+\frac{675597}{106039}a^{9}-\frac{25964}{106039}a^{8}+\frac{13005}{5581}a^{7}-\frac{501080}{106039}a^{6}-\frac{47212}{106039}a^{5}-\frac{227790}{106039}a^{4}+\frac{366469}{106039}a^{3}+\frac{17919}{106039}a^{2}+\frac{167071}{106039}a-\frac{113254}{106039}$, $\frac{9452}{106039}a^{15}+\frac{41171}{106039}a^{14}-\frac{25293}{106039}a^{13}+\frac{1519}{106039}a^{12}-\frac{236038}{106039}a^{11}+\frac{27252}{106039}a^{10}+\frac{193203}{106039}a^{9}+\frac{466966}{106039}a^{8}+\frac{14555}{5581}a^{7}-\frac{278715}{106039}a^{6}-\frac{709174}{106039}a^{5}-\frac{312043}{106039}a^{4}+\frac{273941}{106039}a^{3}+\frac{506490}{106039}a^{2}+\frac{57717}{106039}a-\frac{123834}{106039}$, $\frac{194626}{106039}a^{15}-\frac{310443}{106039}a^{14}+\frac{476421}{106039}a^{13}-\frac{1386203}{106039}a^{12}+\frac{1198956}{106039}a^{11}-\frac{575352}{106039}a^{10}+\frac{2126776}{106039}a^{9}-\frac{371941}{106039}a^{8}-\frac{22474}{5581}a^{7}-\frac{2258420}{106039}a^{6}+\frac{148676}{106039}a^{5}+\frac{786613}{106039}a^{4}+\frac{1419147}{106039}a^{3}-\frac{426429}{106039}a^{2}-\frac{104638}{106039}a-\frac{160105}{106039}$, $\frac{136122}{106039}a^{15}-\frac{177512}{106039}a^{14}+\frac{278778}{106039}a^{13}-\frac{905528}{106039}a^{12}+\frac{615935}{106039}a^{11}-\frac{267820}{106039}a^{10}+\frac{1565278}{106039}a^{9}-\frac{13697}{106039}a^{8}-\frac{12370}{5581}a^{7}-\frac{1879755}{106039}a^{6}-\frac{263694}{106039}a^{5}+\frac{631670}{106039}a^{4}+\frac{1256710}{106039}a^{3}+\frac{11981}{106039}a^{2}-\frac{340990}{106039}a-\frac{156808}{106039}$, $\frac{179749}{106039}a^{15}-\frac{224050}{106039}a^{14}+\frac{402036}{106039}a^{13}-\frac{1196070}{106039}a^{12}+\frac{817493}{106039}a^{11}-\frac{530246}{106039}a^{10}+\frac{2010002}{106039}a^{9}+\frac{95383}{106039}a^{8}+\frac{906}{5581}a^{7}-\frac{2035056}{106039}a^{6}-\frac{312891}{106039}a^{5}+\frac{416417}{106039}a^{4}+\frac{1476831}{106039}a^{3}-\frac{110839}{106039}a^{2}-\frac{160042}{106039}a-\frac{256321}{106039}$, $\frac{21221}{106039}a^{15}+\frac{35522}{106039}a^{14}-\frac{78068}{106039}a^{13}+\frac{69365}{106039}a^{12}-\frac{417548}{106039}a^{11}+\frac{527388}{106039}a^{10}-\frac{177663}{106039}a^{9}+\frac{748346}{106039}a^{8}-\frac{21046}{5581}a^{7}-\frac{199117}{106039}a^{6}-\frac{591865}{106039}a^{5}+\frac{480581}{106039}a^{4}+\frac{238636}{106039}a^{3}+\frac{247294}{106039}a^{2}-\frac{408634}{106039}a+\frac{99440}{106039}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 77.7064932253 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 77.7064932253 \cdot 1}{2\cdot\sqrt{189837888276953125}}\cr\approx \mathstrut & 0.216608160616 \end{aligned}\]
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
A solvable group of order 32768 |
The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.275.1, 8.0.2193125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | $16$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(11\) | 11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
11.8.4.1 | $x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(29\) | $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
29.8.0.1 | $x^{8} + 3 x^{4} + 24 x^{3} + 26 x^{2} + 23 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(1361\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |