Normalized defining polynomial
\( x^{16} + 680 x^{14} + 176460 x^{12} + 22344800 x^{10} + 1494203950 x^{8} + 52810704000 x^{6} + 911335779000 x^{4} + 5995981260000 x^{2} + 383966122500 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(189576579237593007104201322397696000000000000=2^{62}\cdot 5^{12}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $585.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2720=2^{5}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2720}(1,·)$, $\chi_{2720}(2253,·)$, $\chi_{2720}(1997,·)$, $\chi_{2720}(2449,·)$, $\chi_{2720}(89,·)$, $\chi_{2720}(93,·)$, $\chi_{2720}(933,·)$, $\chi_{2720}(2209,·)$, $\chi_{2720}(1957,·)$, $\chi_{2720}(361,·)$, $\chi_{2720}(1437,·)$, $\chi_{2720}(2481,·)$, $\chi_{2720}(53,·)$, $\chi_{2720}(489,·)$, $\chi_{2720}(761,·)$, $\chi_{2720}(117,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{15} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{15} a^{5} + \frac{1}{3} a$, $\frac{1}{45} a^{6} + \frac{1}{45} a^{4} - \frac{4}{9} a^{2}$, $\frac{1}{135} a^{7} - \frac{2}{135} a^{5} + \frac{2}{27} a^{3} - \frac{1}{3} a$, $\frac{1}{22950} a^{8} - \frac{1}{135} a^{6} - \frac{4}{135} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{68850} a^{9} + \frac{1}{135} a^{5} - \frac{13}{81} a^{3} + \frac{4}{9} a$, $\frac{1}{1032750} a^{10} - \frac{17}{2025} a^{6} - \frac{8}{243} a^{4} - \frac{44}{135} a^{2}$, $\frac{1}{1032750} a^{11} - \frac{2}{2025} a^{7} + \frac{23}{1215} a^{5} + \frac{11}{135} a^{3} - \frac{1}{3} a$, $\frac{1}{1032750} a^{12} + \frac{1}{68850} a^{8} + \frac{1}{243} a^{6} + \frac{1}{45} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9294750} a^{13} - \frac{2}{4647375} a^{11} + \frac{2}{309825} a^{9} - \frac{131}{54675} a^{7} - \frac{58}{2187} a^{5} + \frac{91}{1215} a^{3} + \frac{11}{27} a$, $\frac{1}{185502323506440288071250} a^{14} + \frac{5983366007253461}{18550232350644028807125} a^{12} - \frac{2150634589171891}{6183410783548009602375} a^{10} - \frac{149993657376911251}{7420092940257611522850} a^{8} - \frac{73121252316648194}{218238027654635633025} a^{6} - \frac{30059903073158489}{969946789576158369} a^{4} - \frac{161255652601505458}{538859327542310205} a^{2} + \frac{154446118923003}{443505619376387}$, $\frac{1}{556506970519320864213750} a^{15} - \frac{465865215031}{6547140829639068990750} a^{13} + \frac{233298662384123}{742009294025761152285} a^{11} + \frac{14813059235262742}{11130139410386417284275} a^{9} - \frac{24203971841859598}{130942816592781379815} a^{7} + \frac{83034029867820196}{2909840368728475107} a^{5} - \frac{222459428075446864}{1616577982626930615} a^{3} + \frac{503003831554253}{11974651723162449} a$
Class group and class number
$C_{2}\times C_{2}\times C_{34}\times C_{34}\times C_{1038088}$, which has order $4800118912$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 308723659.32686925 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 17 | Data not computed | ||||||