Properties

Label 16.0.18953736582...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{8}\cdot 13^{8}\cdot 29^{6}$
Root discriminant $28.50$
Ramified primes $5, 13, 29$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $C_2^2\wr C_2$ (as 16T46)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, 104, 208, 72, 151, -34, 578, -1181, 1122, -824, 671, -406, 140, -23, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 8*x^14 - 23*x^13 + 140*x^12 - 406*x^11 + 671*x^10 - 824*x^9 + 1122*x^8 - 1181*x^7 + 578*x^6 - 34*x^5 + 151*x^4 + 72*x^3 + 208*x^2 + 104*x + 16)
 
gp: K = bnfinit(x^16 - 4*x^15 + 8*x^14 - 23*x^13 + 140*x^12 - 406*x^11 + 671*x^10 - 824*x^9 + 1122*x^8 - 1181*x^7 + 578*x^6 - 34*x^5 + 151*x^4 + 72*x^3 + 208*x^2 + 104*x + 16, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 8 x^{14} - 23 x^{13} + 140 x^{12} - 406 x^{11} + 671 x^{10} - 824 x^{9} + 1122 x^{8} - 1181 x^{7} + 578 x^{6} - 34 x^{5} + 151 x^{4} + 72 x^{3} + 208 x^{2} + 104 x + 16 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(189537365823025172265625=5^{8}\cdot 13^{8}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.50$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{581} a^{12} + \frac{163}{581} a^{11} - \frac{286}{581} a^{10} - \frac{39}{581} a^{9} - \frac{191}{581} a^{8} + \frac{41}{83} a^{7} - \frac{11}{581} a^{6} - \frac{104}{581} a^{5} - \frac{277}{581} a^{4} + \frac{19}{83} a^{3} - \frac{108}{581} a^{2} + \frac{180}{581} a - \frac{50}{581}$, $\frac{1}{1162} a^{13} + \frac{226}{581} a^{11} + \frac{99}{1162} a^{10} + \frac{178}{581} a^{9} + \frac{23}{581} a^{8} + \frac{269}{1162} a^{7} - \frac{27}{581} a^{6} - \frac{87}{581} a^{5} + \frac{547}{1162} a^{4} - \frac{145}{581} a^{3} + \frac{177}{581} a^{2} + \frac{241}{1162} a + \frac{8}{581}$, $\frac{1}{6972} a^{14} - \frac{53}{996} a^{11} - \frac{43}{581} a^{10} - \frac{153}{1162} a^{9} + \frac{1775}{6972} a^{8} - \frac{260}{581} a^{7} + \frac{1237}{3486} a^{6} + \frac{1133}{2324} a^{5} - \frac{1453}{3486} a^{4} - \frac{277}{1162} a^{3} + \frac{1415}{6972} a^{2} - \frac{1}{1743} a - \frac{160}{1743}$, $\frac{1}{49220829679224} a^{15} - \frac{288906749}{24610414839612} a^{14} + \frac{184703006}{2050867903301} a^{13} + \frac{16747314889}{49220829679224} a^{12} - \frac{170332055471}{3515773548516} a^{11} - \frac{324353923521}{8203471613204} a^{10} - \frac{14791603129621}{49220829679224} a^{9} - \frac{1387658627911}{3515773548516} a^{8} + \frac{294408338119}{3515773548516} a^{7} + \frac{12546742573927}{49220829679224} a^{6} - \frac{4119036977}{74127755541} a^{5} - \frac{6540230153279}{24610414839612} a^{4} + \frac{2552812735061}{7031547097032} a^{3} + \frac{1336096299805}{8203471613204} a^{2} + \frac{784762669298}{2050867903301} a + \frac{391796642537}{878943387129}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 25449.0217415 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\wr C_2$ (as 16T46):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_2^2\wr C_2$
Character table for $C_2^2\wr C_2$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{65}) \), 4.4.122525.1, 4.4.725.1, 4.0.122525.3, 4.0.4901.1, 4.0.122525.1, \(\Q(\sqrt{5}, \sqrt{13})\), 4.0.122525.2, 8.0.15012375625.1, 8.8.15012375625.1, 8.0.15012375625.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$