Normalized defining polynomial
\( x^{16} - 8 x^{15} + 31 x^{14} + 22 x^{13} - 286 x^{12} + 1218 x^{11} + 2835 x^{10} - 5158 x^{9} + 31863 x^{8} + 186018 x^{7} + 219389 x^{6} - 1339930 x^{5} + 3321886 x^{4} + 5646760 x^{3} + 27780227 x^{2} + 147746204 x + 266392369 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(189194279657145152947840000000000=2^{16}\cdot 5^{10}\cdot 29^{6}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{13136343} a^{14} - \frac{336338}{13136343} a^{13} + \frac{165491}{1194213} a^{12} + \frac{683842}{13136343} a^{11} - \frac{1826498}{13136343} a^{10} + \frac{307580}{4378781} a^{9} - \frac{118397}{13136343} a^{8} - \frac{2694854}{13136343} a^{7} + \frac{3762079}{13136343} a^{6} + \frac{206411}{13136343} a^{5} + \frac{774689}{4378781} a^{4} - \frac{579103}{1194213} a^{3} - \frac{1724708}{4378781} a^{2} - \frac{1215627}{4378781} a + \frac{4178918}{13136343}$, $\frac{1}{109711231582197822353461366878348968782895389479183} a^{15} + \frac{1048088625226436755023763156480395757375075}{109711231582197822353461366878348968782895389479183} a^{14} - \frac{488899322735529880161052108249295031219778339839}{3324582775218115828892768693283302084330163317551} a^{13} - \frac{8889786050989319388543886117829123066315142064279}{109711231582197822353461366878348968782895389479183} a^{12} - \frac{4186984727153410979349440464890285667810087226906}{109711231582197822353461366878348968782895389479183} a^{11} + \frac{4299572782911431777103680503746834608930428912165}{36570410527399274117820455626116322927631796493061} a^{10} - \frac{12905723570735434675711578852788847505404916022587}{109711231582197822353461366878348968782895389479183} a^{9} + \frac{3060689565491947297316934860426181636951550973}{97175581560848381181099527793046030808587590327} a^{8} - \frac{56066092676869352991470482639121019131073154996}{1924758448810488111464234506637701206717462973319} a^{7} + \frac{10288769733285874564861273898240882943348923693531}{36570410527399274117820455626116322927631796493061} a^{6} + \frac{16473491994939063408348120194712478156639756191368}{36570410527399274117820455626116322927631796493061} a^{5} - \frac{1627431975694731467468387565798088601886548174706}{3324582775218115828892768693283302084330163317551} a^{4} + \frac{16702134939751574484956561214522672433337154601654}{109711231582197822353461366878348968782895389479183} a^{3} + \frac{21559344784387867778430885109117737242156528199719}{109711231582197822353461366878348968782895389479183} a^{2} + \frac{4127744212051834431769483052349603000914203865611}{109711231582197822353461366878348968782895389479183} a - \frac{155309550537050601328567944056724098847858068921}{524934122402860394035700319992100329104762629087}$
Class group and class number
$C_{2}\times C_{2}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 123798183.997 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n790 are not computed |
| Character table for t16n790 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.1, 4.0.35600.3, 4.0.11600.1, 8.0.1065849760000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |