Normalized defining polynomial
\( x^{16} + 72 x^{12} + 80 x^{10} + 366 x^{8} + 288 x^{6} + 88 x^{4} - 48 x^{2} + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1891079497931380752384=2^{58}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{9} + \frac{1}{3} a^{5} - \frac{4}{9} a^{3} + \frac{1}{6} a$, $\frac{1}{18} a^{10} - \frac{1}{9} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{36} a^{11} - \frac{1}{36} a^{10} - \frac{1}{36} a^{9} - \frac{1}{12} a^{8} - \frac{2}{9} a^{5} - \frac{4}{9} a^{4} - \frac{13}{36} a^{3} + \frac{1}{4} a^{2} - \frac{1}{12} a - \frac{1}{4}$, $\frac{1}{108} a^{12} - \frac{1}{54} a^{10} - \frac{1}{36} a^{8} - \frac{2}{27} a^{6} + \frac{43}{108} a^{4} - \frac{5}{18} a^{2} - \frac{5}{12}$, $\frac{1}{108} a^{13} + \frac{1}{108} a^{11} - \frac{1}{36} a^{10} - \frac{1}{12} a^{8} - \frac{2}{27} a^{7} - \frac{53}{108} a^{5} - \frac{4}{9} a^{4} - \frac{1}{12} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{534276} a^{14} - \frac{1159}{534276} a^{12} - \frac{125}{5508} a^{10} - \frac{36101}{534276} a^{8} - \frac{39877}{534276} a^{6} + \frac{250207}{534276} a^{4} + \frac{3751}{10476} a^{2} + \frac{7333}{59364}$, $\frac{1}{534276} a^{15} - \frac{1159}{534276} a^{13} + \frac{7}{1377} a^{11} - \frac{1}{36} a^{10} + \frac{4211}{267138} a^{9} - \frac{1}{12} a^{8} - \frac{39877}{534276} a^{7} - \frac{46613}{534276} a^{5} - \frac{4}{9} a^{4} + \frac{283}{2619} a^{3} + \frac{1}{4} a^{2} + \frac{11087}{29682} a - \frac{1}{4}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9999.28859963 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-2}, \sqrt{3})\), 4.0.3072.2 x2, 4.2.4608.1 x2, 8.0.339738624.6, 8.0.7247757312.2 x4, 8.2.10871635968.4 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |