Normalized defining polynomial
\( x^{16} + 9 x^{14} - 25 x^{13} - 29 x^{12} + 1005 x^{11} - 5461 x^{10} + 21415 x^{9} - 49309 x^{8} - 172835 x^{7} + 3262910 x^{6} - 16653470 x^{5} + 66855015 x^{4} - 186256050 x^{3} + 474767975 x^{2} - 744073275 x + 862485775 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18875793996821517790730062500000000=2^{8}\cdot 3^{8}\cdot 5^{12}\cdot 7^{8}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $138.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{1}{5} a^{5}$, $\frac{1}{4305} a^{14} + \frac{307}{4305} a^{13} + \frac{103}{1435} a^{12} - \frac{437}{4305} a^{11} + \frac{278}{615} a^{10} + \frac{682}{4305} a^{9} + \frac{1564}{4305} a^{8} - \frac{206}{615} a^{7} + \frac{113}{615} a^{6} - \frac{1048}{4305} a^{5} + \frac{22}{861} a^{4} - \frac{184}{861} a^{3} + \frac{394}{861} a^{2} - \frac{169}{861} a - \frac{85}{861}$, $\frac{1}{7501023660047428563743665117986047787263035176546448725} a^{15} - \frac{33306297194394837249228335589198702638805950657500}{300040946401897142549746604719441911490521407061857949} a^{14} - \frac{548393760215457248559205186792204548398593932094580666}{7501023660047428563743665117986047787263035176546448725} a^{13} - \frac{18052142117406681242178524133819771536612058467440354}{1500204732009485712748733023597209557452607035309289745} a^{12} - \frac{290912816568990337945680346548170793920306355228839811}{833447073338603173749296124220671976362559464060716525} a^{11} - \frac{10519193368099960199913661973017537975490951484811469}{100013648800632380849915534906480637163507135687285983} a^{10} - \frac{382994325113204846864666739794742269225819708791842163}{1071574808578204080534809302569435398180433596649492675} a^{9} - \frac{94515772087193271996466149561565084449828381981262931}{1500204732009485712748733023597209557452607035309289745} a^{8} + \frac{131846185330434090470041803844544840469940771070572}{10823987965436404853886962652216519173539733299489825} a^{7} - \frac{527273288942950020050340237524057526627857848414391458}{1500204732009485712748733023597209557452607035309289745} a^{6} + \frac{28252320310827340326667688359115096180189879990173247}{115400364000729670211441001815169965957892848869945365} a^{5} - \frac{111683225000998897501400659342366056716650328514840566}{500068244003161904249577674532403185817535678436429915} a^{4} - \frac{15759127991829146001031902848911170114954773189441902}{45460749454832900386325243139309380528866879857857265} a^{3} + \frac{17984531292702913542805312283881105366675968072929647}{100013648800632380849915534906480637163507135687285983} a^{2} - \frac{927985744993851427796059289449810585274232309809167}{42862992343128163221392372102777415927217343865979707} a - \frac{116853791265783888945578244816692182203788167013081378}{300040946401897142549746604719441911490521407061857949}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{12}$, which has order $192$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 374826594.216 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{105}) \), 4.0.46125.1, 4.0.251125.1, \(\Q(\sqrt{5}, \sqrt{21})\), 8.0.5108165015625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||