Normalized defining polynomial
\( x^{16} - 5 x^{15} + 13 x^{14} - 48 x^{13} + 141 x^{12} - 198 x^{11} + 2904 x^{10} - 11277 x^{9} + 46307 x^{8} - 168474 x^{7} + 486411 x^{6} - 1023430 x^{5} + 3489306 x^{4} - 3327225 x^{3} + 15334849 x^{2} - 5993851 x + 29720377 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18843687673244176811423009101961=41^{15}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{59} a^{14} - \frac{24}{59} a^{13} + \frac{10}{59} a^{12} - \frac{19}{59} a^{11} - \frac{17}{59} a^{10} - \frac{4}{59} a^{9} - \frac{14}{59} a^{8} + \frac{29}{59} a^{7} + \frac{26}{59} a^{6} - \frac{28}{59} a^{5} - \frac{26}{59} a^{3} + \frac{9}{59} a^{2} - \frac{16}{59} a - \frac{10}{59}$, $\frac{1}{44236589400716312547015942850610142493622391379} a^{15} - \frac{356511771731366186207286449232687106919755914}{44236589400716312547015942850610142493622391379} a^{14} + \frac{6440424807115535230829862930054666357869754887}{44236589400716312547015942850610142493622391379} a^{13} + \frac{14190423093430338270259753357316185195993663239}{44236589400716312547015942850610142493622391379} a^{12} + \frac{9947782773255443978319915908580503456712779455}{44236589400716312547015942850610142493622391379} a^{11} + \frac{15765215743832710088018746176765737080427790335}{44236589400716312547015942850610142493622391379} a^{10} + \frac{13359593397254503620878499858290051380594313072}{44236589400716312547015942850610142493622391379} a^{9} + \frac{12264790846208764033444651895207538511637578935}{44236589400716312547015942850610142493622391379} a^{8} + \frac{232404645653726182519669728935053179203397559}{44236589400716312547015942850610142493622391379} a^{7} - \frac{10945253150458338396757448389195833824066837044}{44236589400716312547015942850610142493622391379} a^{6} + \frac{21137540011911532906433227800953822184648683948}{44236589400716312547015942850610142493622391379} a^{5} - \frac{21974091213724257149648993002977864085802849796}{44236589400716312547015942850610142493622391379} a^{4} - \frac{2374290432057742334119443956488059470276310613}{44236589400716312547015942850610142493622391379} a^{3} - \frac{8919188204425088126084073493440741549351510865}{44236589400716312547015942850610142493622391379} a^{2} + \frac{20528907068988339053378371172034328302938683770}{44236589400716312547015942850610142493622391379} a + \frac{5208530258623036376105668739665938547808012385}{44236589400716312547015942850610142493622391379}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 574982744.485 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.194754273881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $59$ | 59.2.1.1 | $x^{2} - 59$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.1 | $x^{2} - 59$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.1.1 | $x^{2} - 59$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.1 | $x^{2} - 59$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |