Normalized defining polynomial
\( x^{16} - 6 x^{15} - 19 x^{14} + 187 x^{13} - 365 x^{12} - 266 x^{11} + 4944 x^{10} - 21450 x^{9} + 63519 x^{8} - 147125 x^{7} + 212632 x^{6} - 312848 x^{5} + 514868 x^{4} - 9473 x^{3} - 26592 x^{2} - 1939389 x + 1848071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18843687673244176811423009101961=41^{15}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{201952560275600236253972715903493641056458729} a^{15} - \frac{245528697289403705614668995013809149337465}{905616862222422584098532358311630677383223} a^{14} - \frac{56126158749620846438691033701777519534672316}{201952560275600236253972715903493641056458729} a^{13} + \frac{73654383714796109292671687096712380610492574}{201952560275600236253972715903493641056458729} a^{12} + \frac{15631950383783342642300514872885230163478853}{201952560275600236253972715903493641056458729} a^{11} - \frac{59948161190092018477835385289327531794281641}{201952560275600236253972715903493641056458729} a^{10} - \frac{35064129916199033174388272793019018710096568}{201952560275600236253972715903493641056458729} a^{9} - \frac{64584327559976864175003470307231906226031677}{201952560275600236253972715903493641056458729} a^{8} - \frac{74285952581975708576034747165458165268156234}{201952560275600236253972715903493641056458729} a^{7} + \frac{74539314280271424920747154243842240265260310}{201952560275600236253972715903493641056458729} a^{6} + \frac{34917900244540996052285507734520471035893192}{201952560275600236253972715903493641056458729} a^{5} - \frac{53694023879237790240473165763365979538119905}{201952560275600236253972715903493641056458729} a^{4} + \frac{99490142747363368502980439595751198529536037}{201952560275600236253972715903493641056458729} a^{3} + \frac{71308372424785235915721724445902501243578165}{201952560275600236253972715903493641056458729} a^{2} - \frac{16415756805300143575818271328042790370722992}{201952560275600236253972715903493641056458729} a + \frac{9445014148931831556267055158683828984628524}{201952560275600236253972715903493641056458729}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 562417570.815 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.194754273881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $59$ | 59.2.1.1 | $x^{2} - 59$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.1.1 | $x^{2} - 59$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.1 | $x^{2} - 59$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.1 | $x^{2} - 59$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |