Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 56 x^{13} + 55 x^{12} + 34 x^{11} - 176 x^{10} + 187 x^{9} + 52 x^{8} - 384 x^{7} + 297 x^{6} + 282 x^{5} - 330 x^{4} - 153 x^{3} + 108 x^{2} + 63 x + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1883091842914980096=2^{8}\cdot 3^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{4}$, $\frac{1}{603} a^{14} - \frac{7}{603} a^{13} + \frac{25}{201} a^{12} + \frac{43}{603} a^{11} - \frac{73}{603} a^{10} + \frac{8}{67} a^{9} - \frac{26}{603} a^{8} - \frac{172}{603} a^{7} + \frac{28}{201} a^{6} + \frac{29}{67} a^{5} + \frac{30}{67} a^{4} + \frac{58}{201} a^{3} + \frac{17}{67} a^{2} - \frac{28}{67} a + \frac{31}{67}$, $\frac{1}{959373} a^{15} + \frac{788}{959373} a^{14} + \frac{34082}{319791} a^{13} - \frac{1436}{959373} a^{12} + \frac{93206}{959373} a^{11} + \frac{43123}{319791} a^{10} - \frac{42884}{959373} a^{9} + \frac{15338}{959373} a^{8} + \frac{92200}{319791} a^{7} - \frac{119492}{319791} a^{6} + \frac{28378}{106597} a^{5} + \frac{3518}{8643} a^{4} + \frac{590}{2479} a^{3} + \frac{23805}{106597} a^{2} + \frac{3164}{106597} a - \frac{49323}{106597}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{67} a^{14} + \frac{7}{67} a^{13} - \frac{91}{201} a^{12} + \frac{91}{67} a^{11} - \frac{518}{201} a^{10} + \frac{196}{67} a^{9} - \frac{56}{201} a^{8} - \frac{1159}{201} a^{7} + \frac{1624}{201} a^{6} - \frac{448}{201} a^{5} - \frac{672}{67} a^{4} + \frac{1099}{67} a^{3} + \frac{182}{67} a^{2} - \frac{686}{67} a - \frac{145}{67} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 805.821091977 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T43):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-7}) \), 4.0.189.1 x2, 4.2.1323.1 x2, 4.0.12348.1, \(\Q(\sqrt{-3}, \sqrt{-7})\), 4.0.1372.1, 8.0.152473104.1, 8.0.1372257936.1, 8.0.1750329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |