Normalized defining polynomial
\( x^{16} - 6 x^{15} + 21 x^{14} - 46 x^{13} + 82 x^{12} - 124 x^{11} + 151 x^{10} - 144 x^{9} + 75 x^{8} + 16 x^{7} - 83 x^{6} + 96 x^{5} - 64 x^{4} + 22 x^{3} + 21 x^{2} - 18 x + 23 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18809679472226205696=2^{24}\cdot 3^{4}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{127} a^{14} - \frac{58}{127} a^{13} - \frac{15}{127} a^{12} - \frac{50}{127} a^{11} - \frac{52}{127} a^{10} - \frac{14}{127} a^{9} - \frac{56}{127} a^{8} + \frac{30}{127} a^{7} + \frac{9}{127} a^{6} + \frac{63}{127} a^{5} + \frac{34}{127} a^{4} - \frac{19}{127} a^{3} + \frac{26}{127} a^{2} + \frac{16}{127} a - \frac{26}{127}$, $\frac{1}{328545670441} a^{15} - \frac{280420873}{328545670441} a^{14} - \frac{147509627401}{328545670441} a^{13} + \frac{100888253050}{328545670441} a^{12} - \frac{105595822684}{328545670441} a^{11} + \frac{132877875898}{328545670441} a^{10} - \frac{128660434405}{328545670441} a^{9} + \frac{2658969419}{7640596987} a^{8} + \frac{117232123253}{328545670441} a^{7} + \frac{3000586444}{7640596987} a^{6} + \frac{158911394994}{328545670441} a^{5} - \frac{137193369911}{328545670441} a^{4} - \frac{37070410675}{328545670441} a^{3} + \frac{60963262424}{328545670441} a^{2} - \frac{160829435747}{328545670441} a + \frac{2156511406}{14284594367}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 843.403644371 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_8:C_2$ |
| Character table for $D_8:C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-14}) \), 4.2.448.1 x2, 4.0.392.1 x2, \(\Q(\sqrt{2}, \sqrt{-7})\), 8.0.9834496.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |