Normalized defining polynomial
\( x^{16} + 170 x^{14} + 11900 x^{12} + 442000 x^{10} + 9350000 x^{8} + 112200000 x^{6} + 714000000 x^{4} + 2040000000 x^{2} + 1700000000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18759175710374728781004800000000=2^{24}\cdot 5^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(680=2^{3}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{680}(1,·)$, $\chi_{680}(321,·)$, $\chi_{680}(269,·)$, $\chi_{680}(589,·)$, $\chi_{680}(81,·)$, $\chi_{680}(469,·)$, $\chi_{680}(441,·)$, $\chi_{680}(281,·)$, $\chi_{680}(669,·)$, $\chi_{680}(161,·)$, $\chi_{680}(549,·)$, $\chi_{680}(361,·)$, $\chi_{680}(109,·)$, $\chi_{680}(29,·)$, $\chi_{680}(309,·)$, $\chi_{680}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{10} a^{2}$, $\frac{1}{10} a^{3}$, $\frac{1}{100} a^{4}$, $\frac{1}{100} a^{5}$, $\frac{1}{1000} a^{6}$, $\frac{1}{1000} a^{7}$, $\frac{1}{10000} a^{8}$, $\frac{1}{10000} a^{9}$, $\frac{1}{100000} a^{10}$, $\frac{1}{100000} a^{11}$, $\frac{1}{1000000} a^{12}$, $\frac{1}{1000000} a^{13}$, $\frac{1}{10000000} a^{14}$, $\frac{1}{10000000} a^{15}$
Class group and class number
$C_{2}\times C_{2}\times C_{38978}$, which has order $155912$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.5 | $x^{8} + 6 x^{6} + 8 x^{5} + 80$ | $2$ | $4$ | $12$ | $C_8$ | $[3]^{4}$ |
| 2.8.12.5 | $x^{8} + 6 x^{6} + 8 x^{5} + 80$ | $2$ | $4$ | $12$ | $C_8$ | $[3]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||