Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{14} - 20 x^{13} + 62 x^{12} - 178 x^{11} + 410 x^{10} - 710 x^{9} + 1146 x^{8} - 1668 x^{7} + 2314 x^{6} - 2822 x^{5} + 3045 x^{4} - 2574 x^{3} + 1860 x^{2} - 872 x + 304 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1872141728489072265625=5^{10}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{12} a^{11} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{12} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{120} a^{12} + \frac{1}{60} a^{11} + \frac{1}{20} a^{10} - \frac{1}{8} a^{9} + \frac{1}{60} a^{8} - \frac{1}{10} a^{7} + \frac{1}{8} a^{6} - \frac{1}{20} a^{5} + \frac{13}{60} a^{4} + \frac{31}{120} a^{3} + \frac{3}{20} a^{2} + \frac{1}{10} a - \frac{7}{15}$, $\frac{1}{120} a^{13} + \frac{1}{60} a^{11} + \frac{1}{40} a^{10} + \frac{1}{60} a^{9} + \frac{7}{60} a^{8} - \frac{7}{40} a^{7} + \frac{1}{5} a^{6} - \frac{11}{60} a^{5} + \frac{3}{40} a^{4} + \frac{23}{60} a^{3} + \frac{1}{20} a^{2} + \frac{1}{3} a - \frac{1}{15}$, $\frac{1}{1800} a^{14} + \frac{1}{450} a^{13} + \frac{1}{1800} a^{12} + \frac{49}{1800} a^{11} + \frac{47}{450} a^{10} - \frac{83}{1800} a^{9} - \frac{29}{600} a^{8} - \frac{7}{450} a^{7} + \frac{439}{1800} a^{6} + \frac{367}{1800} a^{5} + \frac{47}{225} a^{4} + \frac{739}{1800} a^{3} + \frac{61}{300} a^{2} + \frac{29}{90} a + \frac{43}{225}$, $\frac{1}{3859021800} a^{15} - \frac{43901}{482377725} a^{14} + \frac{9173813}{3859021800} a^{13} + \frac{15336047}{3859021800} a^{12} + \frac{841491}{42878020} a^{11} - \frac{98357183}{1286340600} a^{10} + \frac{293382979}{3859021800} a^{9} - \frac{12883628}{482377725} a^{8} + \frac{21267531}{85756040} a^{7} - \frac{155339311}{3859021800} a^{6} - \frac{262223429}{1929510900} a^{5} + \frac{297683177}{3859021800} a^{4} + \frac{183448567}{964755450} a^{3} + \frac{467598757}{964755450} a^{2} - \frac{31602679}{160792575} a + \frac{121151479}{482377725}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22677.4816599 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{305}) \), 4.0.1525.1 x2, 4.0.18605.1 x2, \(\Q(\sqrt{5}, \sqrt{61})\), 8.4.43268253125.1 x2, 8.0.8653650625.1 x2, 8.0.8653650625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |