Properties

Label 16.0.18694710375...000.12
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 19^{8}$
Root discriminant $67.53$
Ramified primes $2, 3, 5, 19$
Class number $12288$ (GRH)
Class group $[4, 8, 8, 48]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6851556, -5355144, 7275852, -4245960, 3188158, -1433520, 750810, -263116, 104261, -28984, 9374, -2284, 684, -168, 44, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 44*x^14 - 168*x^13 + 684*x^12 - 2284*x^11 + 9374*x^10 - 28984*x^9 + 104261*x^8 - 263116*x^7 + 750810*x^6 - 1433520*x^5 + 3188158*x^4 - 4245960*x^3 + 7275852*x^2 - 5355144*x + 6851556)
 
gp: K = bnfinit(x^16 - 8*x^15 + 44*x^14 - 168*x^13 + 684*x^12 - 2284*x^11 + 9374*x^10 - 28984*x^9 + 104261*x^8 - 263116*x^7 + 750810*x^6 - 1433520*x^5 + 3188158*x^4 - 4245960*x^3 + 7275852*x^2 - 5355144*x + 6851556, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 44 x^{14} - 168 x^{13} + 684 x^{12} - 2284 x^{11} + 9374 x^{10} - 28984 x^{9} + 104261 x^{8} - 263116 x^{7} + 750810 x^{6} - 1433520 x^{5} + 3188158 x^{4} - 4245960 x^{3} + 7275852 x^{2} - 5355144 x + 6851556 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(186947103756597696921600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 19^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $67.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2280=2^{3}\cdot 3\cdot 5\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{2280}(1,·)$, $\chi_{2280}(2051,·)$, $\chi_{2280}(1861,·)$, $\chi_{2280}(911,·)$, $\chi_{2280}(721,·)$, $\chi_{2280}(1559,·)$, $\chi_{2280}(1369,·)$, $\chi_{2280}(419,·)$, $\chi_{2280}(229,·)$, $\chi_{2280}(2279,·)$, $\chi_{2280}(2089,·)$, $\chi_{2280}(1139,·)$, $\chi_{2280}(1331,·)$, $\chi_{2280}(949,·)$, $\chi_{2280}(191,·)$, $\chi_{2280}(1141,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{14} a^{10} + \frac{1}{7} a^{9} + \frac{1}{14} a^{8} - \frac{1}{7} a^{7} + \frac{1}{14} a^{6} + \frac{2}{7} a^{5} - \frac{1}{14} a^{4} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{14} a^{11} - \frac{3}{14} a^{9} + \frac{3}{14} a^{8} + \frac{5}{14} a^{7} + \frac{1}{7} a^{6} + \frac{5}{14} a^{5} + \frac{5}{14} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{42} a^{12} + \frac{1}{42} a^{10} - \frac{5}{21} a^{9} + \frac{3}{14} a^{8} - \frac{1}{7} a^{7} - \frac{19}{42} a^{6} - \frac{1}{7} a^{4} - \frac{8}{21} a^{3} + \frac{5}{21} a^{2} + \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{42} a^{13} + \frac{1}{42} a^{11} - \frac{1}{42} a^{10} + \frac{1}{7} a^{9} + \frac{1}{14} a^{8} + \frac{5}{42} a^{7} + \frac{3}{14} a^{6} + \frac{3}{14} a^{5} + \frac{17}{42} a^{4} + \frac{8}{21} a^{3} + \frac{1}{7} a^{2} + \frac{1}{7}$, $\frac{1}{1816071408036942} a^{14} - \frac{1}{259438772576706} a^{13} - \frac{8108915964998}{908035704018471} a^{12} - \frac{16206197354143}{908035704018471} a^{11} - \frac{10186036756268}{908035704018471} a^{10} - \frac{200481114861521}{908035704018471} a^{9} + \frac{16545519668884}{908035704018471} a^{8} - \frac{79318650708664}{908035704018471} a^{7} - \frac{10232966439043}{259438772576706} a^{6} - \frac{51476566340803}{1816071408036942} a^{5} + \frac{201504609627634}{908035704018471} a^{4} - \frac{378641237051356}{908035704018471} a^{3} + \frac{51604584026129}{129719386288353} a^{2} + \frac{20697732071490}{43239795429451} a - \frac{92195732957669}{302678568006157}$, $\frac{1}{1102807546459024992558} a^{15} + \frac{303617}{1102807546459024992558} a^{14} + \frac{7310665714809513559}{1102807546459024992558} a^{13} - \frac{2176245742499447998}{183801257743170832093} a^{12} - \frac{15205358953567708654}{551403773229512496279} a^{11} + \frac{19176753277312536701}{1102807546459024992558} a^{10} - \frac{3724617064428906045}{183801257743170832093} a^{9} + \frac{12164998415672043709}{157543935208432141794} a^{8} - \frac{169104921097201055577}{367602515486341664186} a^{7} + \frac{476664592055719814}{10811838690774754829} a^{6} + \frac{64947289730906536097}{157543935208432141794} a^{5} - \frac{100568250794001690415}{1102807546459024992558} a^{4} - \frac{14973436129641139150}{78771967604216070897} a^{3} - \frac{51000562217952116003}{551403773229512496279} a^{2} - \frac{21833908319849374453}{183801257743170832093} a + \frac{664985794260799559}{183801257743170832093}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{8}\times C_{8}\times C_{48}$, which has order $12288$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 15197.42445606848 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-285}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-570}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-190}) \), \(\Q(\sqrt{-57}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-114}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-38}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{2}, \sqrt{-285})\), \(\Q(\sqrt{3}, \sqrt{-95})\), \(\Q(\sqrt{6}, \sqrt{-190})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{2}, \sqrt{-95})\), \(\Q(\sqrt{3}, \sqrt{-190})\), \(\Q(\sqrt{6}, \sqrt{-95})\), \(\Q(\sqrt{5}, \sqrt{-57})\), \(\Q(\sqrt{10}, \sqrt{-114})\), \(\Q(\sqrt{15}, \sqrt{-19})\), \(\Q(\sqrt{30}, \sqrt{-38})\), \(\Q(\sqrt{2}, \sqrt{-57})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-19})\), \(\Q(\sqrt{2}, \sqrt{15})\), \(\Q(\sqrt{10}, \sqrt{-57})\), \(\Q(\sqrt{5}, \sqrt{-114})\), \(\Q(\sqrt{-19}, \sqrt{30})\), \(\Q(\sqrt{15}, \sqrt{-38})\), \(\Q(\sqrt{3}, \sqrt{-19})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-38})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{15}, \sqrt{-57})\), \(\Q(\sqrt{5}, \sqrt{-19})\), \(\Q(\sqrt{30}, \sqrt{-95})\), \(\Q(\sqrt{10}, \sqrt{-38})\), \(\Q(\sqrt{6}, \sqrt{-38})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{-19})\), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{30}, \sqrt{-57})\), \(\Q(\sqrt{5}, \sqrt{-38})\), \(\Q(\sqrt{15}, \sqrt{-114})\), \(\Q(\sqrt{10}, \sqrt{-19})\), 8.0.432373800960000.273, 8.0.432373800960000.208, 8.0.432373800960000.144, 8.0.1688960160000.4, 8.0.432373800960000.30, 8.0.432373800960000.143, 8.0.432373800960000.81, 8.0.691798081536.5, 8.8.3317760000.1, 8.0.432373800960000.189, 8.0.333621760000.2, 8.0.432373800960000.142, 8.0.432373800960000.197, 8.0.432373800960000.158, 8.0.27023362560000.101

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$19$19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$