Normalized defining polynomial
\( x^{16} - 2 x^{15} + 194 x^{14} - 226 x^{13} + 15312 x^{12} - 4102 x^{11} + 637218 x^{10} + 369154 x^{9} + 15396726 x^{8} + 19606386 x^{7} + 222224758 x^{6} + 413636482 x^{5} + 1758527272 x^{4} + 4162184006 x^{3} + 5715260614 x^{2} + 11160522222 x + 18098212481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18682108719227553550336000000000000=2^{24}\cdot 5^{12}\cdot 61^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $138.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{5}{12} a^{3} - \frac{1}{2} a^{2} + \frac{1}{12} a - \frac{5}{12}$, $\frac{1}{120} a^{12} - \frac{1}{15} a^{9} - \frac{1}{24} a^{8} - \frac{1}{6} a^{7} - \frac{2}{15} a^{6} + \frac{1}{6} a^{5} - \frac{5}{24} a^{4} - \frac{13}{30} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{59}{120}$, $\frac{1}{120} a^{13} + \frac{1}{60} a^{10} - \frac{1}{8} a^{9} + \frac{1}{12} a^{8} + \frac{1}{30} a^{7} - \frac{1}{6} a^{6} - \frac{5}{24} a^{5} + \frac{1}{15} a^{4} - \frac{1}{2} a^{3} + \frac{1}{12} a^{2} + \frac{31}{120} a - \frac{5}{12}$, $\frac{1}{2280} a^{14} - \frac{1}{380} a^{13} + \frac{1}{1140} a^{12} - \frac{13}{380} a^{11} - \frac{9}{760} a^{10} - \frac{32}{285} a^{9} + \frac{41}{570} a^{8} + \frac{109}{570} a^{7} - \frac{517}{2280} a^{6} + \frac{23}{380} a^{5} + \frac{77}{380} a^{4} - \frac{427}{1140} a^{3} - \frac{3}{760} a^{2} - \frac{149}{570} a - \frac{1}{10}$, $\frac{1}{6357172291755003086916178961936831254219601498915813413863720} a^{15} + \frac{1183152144460147656346228550482778879332855101198639598909}{6357172291755003086916178961936831254219601498915813413863720} a^{14} - \frac{3362346437677681291042049565247827749404095798246175950479}{1271434458351000617383235792387366250843920299783162682772744} a^{13} + \frac{937701078326156556835092731887919909786567474082900495303}{2119057430585001028972059653978943751406533832971937804621240} a^{12} + \frac{75462689769738135283174115092770957786200853206399649869881}{2119057430585001028972059653978943751406533832971937804621240} a^{11} + \frac{51234644337694222582589816214927685209081160365341573248945}{1271434458351000617383235792387366250843920299783162682772744} a^{10} - \frac{463561593124915612809746249310701638743259003827345899374807}{6357172291755003086916178961936831254219601498915813413863720} a^{9} + \frac{510115545434711908821336792129341323672637460208665238004131}{6357172291755003086916178961936831254219601498915813413863720} a^{8} - \frac{106741231618060120668054542076372796345637600562570938306257}{1271434458351000617383235792387366250843920299783162682772744} a^{7} + \frac{1137083448015508750664801800671304595715229624963657851297451}{6357172291755003086916178961936831254219601498915813413863720} a^{6} - \frac{826271007094554768787017594811841315896667150847562860350893}{6357172291755003086916178961936831254219601498915813413863720} a^{5} - \frac{71285067774218550173403094828035274534985813452319350912463}{423811486117000205794411930795788750281306766594387560924248} a^{4} + \frac{837901145561690530207093541209992523793074248351459214671299}{2119057430585001028972059653978943751406533832971937804621240} a^{3} - \frac{1589309299367591826015705314885183098341627963256796908000021}{6357172291755003086916178961936831254219601498915813413863720} a^{2} - \frac{492377366589384575928407724753198804935655103452274066302077}{1271434458351000617383235792387366250843920299783162682772744} a - \frac{80029789866208303306761802830751143430010042862982586022437}{334588015355526478258746261154570066011557973627148074413880}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{65864}$, which has order $1053824$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26657.4092537 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n864 |
| Character table for t16n864 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |