Normalized defining polynomial
\( x^{16} - 6 x^{15} + 44 x^{14} - 160 x^{13} + 650 x^{12} - 1011 x^{11} + 3377 x^{10} - 345 x^{9} + 31960 x^{8} - 92998 x^{7} + 658364 x^{6} - 1825197 x^{5} + 5624423 x^{4} - 10644004 x^{3} + 19530533 x^{2} - 19330719 x + 16140569 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1855320212000952785484765625=5^{8}\cdot 29^{6}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{41} a^{12} - \frac{11}{41} a^{11} - \frac{18}{41} a^{10} - \frac{8}{41} a^{9} - \frac{7}{41} a^{8} + \frac{4}{41} a^{7} + \frac{13}{41} a^{6} - \frac{3}{41} a^{5} + \frac{18}{41} a^{4} - \frac{16}{41} a^{3} - \frac{18}{41} a^{2} + \frac{5}{41} a + \frac{17}{41}$, $\frac{1}{451} a^{13} + \frac{4}{451} a^{12} - \frac{60}{451} a^{11} - \frac{114}{451} a^{10} + \frac{201}{451} a^{9} + \frac{63}{451} a^{8} + \frac{73}{451} a^{7} + \frac{28}{451} a^{6} + \frac{5}{41} a^{5} + \frac{8}{451} a^{4} + \frac{111}{451} a^{3} + \frac{145}{451} a^{2} + \frac{51}{451} a + \frac{50}{451}$, $\frac{1}{451} a^{14} + \frac{1}{451} a^{12} + \frac{181}{451} a^{11} + \frac{173}{451} a^{10} - \frac{4}{451} a^{9} + \frac{184}{451} a^{8} + \frac{4}{41} a^{7} + \frac{42}{451} a^{6} + \frac{8}{451} a^{5} + \frac{112}{451} a^{4} - \frac{178}{451} a^{3} - \frac{111}{451} a^{2} - \frac{20}{41} a + \frac{207}{451}$, $\frac{1}{298116485566642600124269861418152949615095177} a^{15} + \frac{40828505854736281193050670326945328513178}{298116485566642600124269861418152949615095177} a^{14} - \frac{79714088236251048604960105362017220723763}{298116485566642600124269861418152949615095177} a^{13} - \frac{919054104645077574319980425870223250309960}{298116485566642600124269861418152949615095177} a^{12} + \frac{818913767181066751738348556200999179766749}{7271133794308356100591947839467145112563297} a^{11} + \frac{80853456199372892823758188516644144000623230}{298116485566642600124269861418152949615095177} a^{10} - \frac{64314291479310362742776829825490746160814648}{298116485566642600124269861418152949615095177} a^{9} - \frac{126085759052507952324379228548971447645657447}{298116485566642600124269861418152949615095177} a^{8} + \frac{113429046034856804927690660736423054601277524}{298116485566642600124269861418152949615095177} a^{7} - \frac{82171476378301849103892468997801297216907}{1665455226629288268850669616861189662654163} a^{6} + \frac{4658322249018470206391484966566516323983799}{298116485566642600124269861418152949615095177} a^{5} + \frac{124162239544497275093436717099408773366051084}{298116485566642600124269861418152949615095177} a^{4} + \frac{5611115383975582275368932295292274941431464}{298116485566642600124269861418152949615095177} a^{3} + \frac{60188666593229235532224598757822568388975207}{298116485566642600124269861418152949615095177} a^{2} - \frac{82631340221979529928788068678848891897522741}{298116485566642600124269861418152949615095177} a - \frac{2920650087060732102481563264700523984086552}{7271133794308356100591947839467145112563297}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2526845.66715 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^2:D_4$ (as 16T225):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_2^2.C_2^2:D_4$ |
| Character table for $C_2^2.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.29725.2, 4.4.725.1, 4.0.1025.1, 8.0.883575625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |