Properties

Label 16.0.18553202120...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{8}\cdot 29^{6}\cdot 41^{8}$
Root discriminant $50.61$
Ramified primes $5, 29, 41$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $C_2^2.C_2^2:D_4$ (as 16T225)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![23431, 80020, 90206, 34872, 21212, 35394, 8886, 317, 7349, -1132, 1666, -519, 442, -122, 41, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 41*x^14 - 122*x^13 + 442*x^12 - 519*x^11 + 1666*x^10 - 1132*x^9 + 7349*x^8 + 317*x^7 + 8886*x^6 + 35394*x^5 + 21212*x^4 + 34872*x^3 + 90206*x^2 + 80020*x + 23431)
 
gp: K = bnfinit(x^16 - 5*x^15 + 41*x^14 - 122*x^13 + 442*x^12 - 519*x^11 + 1666*x^10 - 1132*x^9 + 7349*x^8 + 317*x^7 + 8886*x^6 + 35394*x^5 + 21212*x^4 + 34872*x^3 + 90206*x^2 + 80020*x + 23431, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 41 x^{14} - 122 x^{13} + 442 x^{12} - 519 x^{11} + 1666 x^{10} - 1132 x^{9} + 7349 x^{8} + 317 x^{7} + 8886 x^{6} + 35394 x^{5} + 21212 x^{4} + 34872 x^{3} + 90206 x^{2} + 80020 x + 23431 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1855320212000952785484765625=5^{8}\cdot 29^{6}\cdot 41^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $50.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} - \frac{4}{19} a^{13} + \frac{7}{19} a^{11} - \frac{7}{19} a^{10} - \frac{6}{19} a^{9} + \frac{2}{19} a^{7} - \frac{2}{19} a^{6} - \frac{6}{19} a^{5} + \frac{5}{19} a^{4} - \frac{4}{19} a^{3} + \frac{9}{19} a^{2} - \frac{7}{19} a - \frac{4}{19}$, $\frac{1}{75208700055364490206537822746589549} a^{15} - \frac{1402764309914943937474314090330587}{75208700055364490206537822746589549} a^{14} + \frac{34702562039920298900310162155835577}{75208700055364490206537822746589549} a^{13} + \frac{2154256801376359581563559142026435}{75208700055364490206537822746589549} a^{12} - \frac{960063548232157835137695741284357}{3958352634492867905607253828767871} a^{11} + \frac{36847930085093071486691985399325223}{75208700055364490206537822746589549} a^{10} + \frac{34929685531288548384226231418052102}{75208700055364490206537822746589549} a^{9} + \frac{22816948594589852081877488837720447}{75208700055364490206537822746589549} a^{8} + \frac{1045680585316109572151639939610434}{3958352634492867905607253828767871} a^{7} - \frac{1211999228251703530309005035206973}{75208700055364490206537822746589549} a^{6} - \frac{13844437903800014126384821534550152}{75208700055364490206537822746589549} a^{5} + \frac{17556250918577363101995472092980831}{75208700055364490206537822746589549} a^{4} - \frac{17690027470853219793771652404710750}{75208700055364490206537822746589549} a^{3} + \frac{12128261323425170116749121743012192}{75208700055364490206537822746589549} a^{2} - \frac{9949326333338918179227812840453723}{75208700055364490206537822746589549} a + \frac{21659807931319771437252345820517069}{75208700055364490206537822746589549}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2141293.75413 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.C_2^2:D_4$ (as 16T225):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 32 conjugacy class representatives for $C_2^2.C_2^2:D_4$
Character table for $C_2^2.C_2^2:D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 4.0.29725.2, 4.0.1025.1, 8.0.883575625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$41$41.4.2.2$x^{4} - 41 x^{2} + 20172$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
41.4.3.3$x^{4} + 246$$4$$1$$3$$C_4$$[\ ]_{4}$
41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.3.3$x^{4} + 246$$4$$1$$3$$C_4$$[\ ]_{4}$