Normalized defining polynomial
\( x^{16} - 8 x^{15} + 252 x^{14} - 1624 x^{13} + 27670 x^{12} - 145272 x^{11} + 1741116 x^{10} - 7411672 x^{9} + 68918345 x^{8} - 232736704 x^{7} + 1760597328 x^{6} - 4496812400 x^{5} + 28373018608 x^{4} - 49508817424 x^{3} + 263791224520 x^{2} - 239749602736 x + 1082924229118 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(185453665802223303376747219715620864=2^{62}\cdot 7^{8}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $160.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3808=2^{5}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3808}(1,·)$, $\chi_{3808}(3333,·)$, $\chi_{3808}(1665,·)$, $\chi_{3808}(713,·)$, $\chi_{3808}(2381,·)$, $\chi_{3808}(3093,·)$, $\chi_{3808}(2617,·)$, $\chi_{3808}(477,·)$, $\chi_{3808}(1189,·)$, $\chi_{3808}(1905,·)$, $\chi_{3808}(2857,·)$, $\chi_{3808}(237,·)$, $\chi_{3808}(2141,·)$, $\chi_{3808}(3569,·)$, $\chi_{3808}(953,·)$, $\chi_{3808}(1429,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11916846145500052417919521} a^{14} - \frac{7}{11916846145500052417919521} a^{13} - \frac{3946614775289306062233198}{11916846145500052417919521} a^{12} - \frac{154003639264268462439763}{11916846145500052417919521} a^{11} + \frac{5668510689393913116678295}{11916846145500052417919521} a^{10} + \frac{4847402967619701770091575}{11916846145500052417919521} a^{9} - \frac{1902777039756319245737095}{11916846145500052417919521} a^{8} + \frac{666342612400218111400865}{11916846145500052417919521} a^{7} + \frac{2365947729569047936044108}{11916846145500052417919521} a^{6} - \frac{1677125210798269578317069}{11916846145500052417919521} a^{5} + \frac{3052857356128134700769957}{11916846145500052417919521} a^{4} - \frac{5130368167318410779365804}{11916846145500052417919521} a^{3} - \frac{1627154299733551835803219}{11916846145500052417919521} a^{2} - \frac{2163018222950889671088646}{11916846145500052417919521} a + \frac{2397684802555783526854831}{11916846145500052417919521}$, $\frac{1}{3087808527863802095658981799162337} a^{15} + \frac{129556441}{3087808527863802095658981799162337} a^{14} - \frac{32823907971933865669853512804986}{3087808527863802095658981799162337} a^{13} - \frac{297953992066537926598411173263187}{3087808527863802095658981799162337} a^{12} + \frac{805228100755126475252927805911884}{3087808527863802095658981799162337} a^{11} + \frac{128839213130646181955094206543}{16166536795098440291408281671007} a^{10} - \frac{160413716158972305606416116830683}{3087808527863802095658981799162337} a^{9} + \frac{1679112528378865589694019417415}{9162636581198225803142379226001} a^{8} + \frac{128983428461994900128968367867768}{3087808527863802095658981799162337} a^{7} + \frac{598968859148841754898032200523311}{3087808527863802095658981799162337} a^{6} - \frac{637259174935512845811922099430272}{3087808527863802095658981799162337} a^{5} - \frac{1128151388027386158691804554125216}{3087808527863802095658981799162337} a^{4} - \frac{1268060570908453449401148143795031}{3087808527863802095658981799162337} a^{3} + \frac{1235031601615426223508350104641600}{3087808527863802095658981799162337} a^{2} + \frac{34532541795331368395378422662974}{99606726705283938569644574166527} a + \frac{1402276167903703911330726355047676}{3087808527863802095658981799162337}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{40}\times C_{7720}$, which has order $19763200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |