Normalized defining polynomial
\( x^{16} - 4 x^{15} + 11 x^{14} - 49 x^{13} + 138 x^{12} - 90 x^{11} + 918 x^{10} + 557 x^{9} + 3240 x^{8} + 3840 x^{7} + 7041 x^{6} + 8581 x^{5} + 9376 x^{4} + 9059 x^{3} + 5682 x^{2} + 3502 x + 1289 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18492726723880560939453125=5^{9}\cdot 79^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{3}{10} a^{9} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} + \frac{1}{10} a^{3} - \frac{1}{10} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{11} + \frac{3}{10} a^{10} - \frac{1}{2} a^{9} + \frac{2}{5} a^{8} - \frac{3}{10} a^{7} - \frac{2}{5} a^{6} - \frac{1}{10} a^{5} + \frac{1}{10} a^{4} - \frac{3}{10} a^{3} + \frac{3}{10} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{14} + \frac{1}{5} a^{11} - \frac{1}{10} a^{10} - \frac{1}{5} a^{9} - \frac{1}{2} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{2} - \frac{1}{10} a + \frac{3}{10}$, $\frac{1}{7989180134278292776164670} a^{15} - \frac{165250525949019907313049}{7989180134278292776164670} a^{14} - \frac{39467005848992899598959}{3994590067139146388082335} a^{13} + \frac{147075994025371664317133}{3994590067139146388082335} a^{12} + \frac{72884790351132178992919}{1597836026855658555232934} a^{11} + \frac{3762695370313379536239921}{7989180134278292776164670} a^{10} + \frac{1605198573112783615068673}{3994590067139146388082335} a^{9} - \frac{3044498041711495909225611}{7989180134278292776164670} a^{8} - \frac{1520882560166211391104551}{3994590067139146388082335} a^{7} + \frac{2249590260041985700953469}{7989180134278292776164670} a^{6} - \frac{1142736830118163978156691}{7989180134278292776164670} a^{5} - \frac{2946973521912111843106311}{7989180134278292776164670} a^{4} + \frac{1743933149800592248744953}{7989180134278292776164670} a^{3} - \frac{926430185480395258767202}{3994590067139146388082335} a^{2} - \frac{58055738638860548388047}{798918013427829277616467} a - \frac{2546385932757527077333}{6197967520774470734030}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 436094.419293 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-79}) \), 4.0.31205.1, 8.0.4868760125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $79$ | 79.8.6.2 | $x^{8} + 395 x^{4} + 56169$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 79.8.4.1 | $x^{8} + 37446 x^{4} - 493039 x^{2} + 350550729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |