Normalized defining polynomial
\( x^{16} - 4 x^{15} + 21 x^{14} - 64 x^{13} + 182 x^{12} - 221 x^{11} + 381 x^{10} - 37 x^{9} - 1405 x^{8} + 302 x^{7} + 4446 x^{6} - 4001 x^{5} + 8032 x^{4} - 9331 x^{3} + 5710 x^{2} - 1172 x + 104 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18492726723880560939453125=5^{9}\cdot 79^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{40} a^{12} + \frac{1}{20} a^{11} - \frac{1}{5} a^{10} + \frac{1}{20} a^{9} - \frac{1}{20} a^{8} + \frac{1}{8} a^{7} + \frac{13}{40} a^{6} + \frac{3}{10} a^{5} - \frac{7}{20} a^{4} + \frac{7}{20} a^{3} - \frac{3}{10} a^{2} + \frac{17}{40} a - \frac{3}{20}$, $\frac{1}{40} a^{13} - \frac{1}{20} a^{11} + \frac{1}{5} a^{10} + \frac{1}{10} a^{9} - \frac{1}{40} a^{8} + \frac{13}{40} a^{7} - \frac{7}{20} a^{6} + \frac{3}{10} a^{5} - \frac{1}{5} a^{4} + \frac{1}{4} a^{3} - \frac{9}{40} a^{2} + \frac{1}{4} a - \frac{1}{5}$, $\frac{1}{800} a^{14} + \frac{9}{800} a^{13} - \frac{1}{100} a^{12} - \frac{41}{400} a^{11} - \frac{29}{200} a^{10} - \frac{157}{800} a^{9} + \frac{19}{200} a^{8} - \frac{127}{800} a^{7} + \frac{3}{50} a^{6} - \frac{83}{200} a^{5} - \frac{39}{400} a^{4} + \frac{257}{800} a^{3} + \frac{361}{800} a^{2} + \frac{3}{10} a + \frac{81}{200}$, $\frac{1}{1788984712052682007115200} a^{15} - \frac{239570631740978203437}{447246178013170501778800} a^{14} - \frac{14916126094257776957501}{1788984712052682007115200} a^{13} + \frac{10796656448216485645847}{894492356026341003557600} a^{12} - \frac{89966750163698183684221}{894492356026341003557600} a^{11} + \frac{74987162887554012745451}{357796942410536401423040} a^{10} + \frac{63260912802380461993089}{357796942410536401423040} a^{9} - \frac{113964058423190728111419}{1788984712052682007115200} a^{8} - \frac{458341875075681325095253}{1788984712052682007115200} a^{7} - \frac{119058092042420657194897}{447246178013170501778800} a^{6} - \frac{54095434086850359813537}{894492356026341003557600} a^{5} + \frac{858063069311615570703463}{1788984712052682007115200} a^{4} + \frac{119368973452239529401023}{447246178013170501778800} a^{3} + \frac{597799510697140271171243}{1788984712052682007115200} a^{2} - \frac{168071518286600424555629}{447246178013170501778800} a - \frac{14038995733059948274749}{34403552154859269367600}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4985395.89387 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-79}) \), 4.0.31205.1, 8.0.4868760125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $79$ | 79.8.4.1 | $x^{8} + 37446 x^{4} - 493039 x^{2} + 350550729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 79.8.6.2 | $x^{8} + 395 x^{4} + 56169$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |