Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 80 x^{13} + 148 x^{12} - 232 x^{11} + 316 x^{10} - 328 x^{9} + 190 x^{8} + 56 x^{7} - 264 x^{6} + 312 x^{5} - 184 x^{4} - 16 x^{3} + 128 x^{2} - 104 x + 34 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1846757322198614016=2^{48}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{663} a^{14} - \frac{217}{663} a^{13} + \frac{37}{221} a^{12} + \frac{50}{663} a^{11} - \frac{77}{221} a^{10} + \frac{31}{221} a^{9} + \frac{14}{39} a^{8} - \frac{38}{221} a^{7} + \frac{4}{221} a^{6} - \frac{19}{663} a^{5} + \frac{101}{663} a^{4} + \frac{1}{13} a^{3} - \frac{66}{221} a^{2} - \frac{148}{663} a - \frac{16}{39}$, $\frac{1}{2264039583} a^{15} + \frac{287533}{754679861} a^{14} + \frac{905259113}{2264039583} a^{13} - \frac{283499839}{2264039583} a^{12} + \frac{1003090976}{2264039583} a^{11} - \frac{376841909}{754679861} a^{10} + \frac{628807663}{2264039583} a^{9} + \frac{800015347}{2264039583} a^{8} + \frac{254862397}{754679861} a^{7} + \frac{636030188}{2264039583} a^{6} - \frac{54766865}{174156891} a^{5} + \frac{94856483}{2264039583} a^{4} + \frac{1204224}{20396753} a^{3} + \frac{864042299}{2264039583} a^{2} + \frac{233954382}{754679861} a - \frac{24534424}{133178799}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{11191346}{25438647} a^{15} - \frac{78603037}{25438647} a^{14} + \frac{280207268}{25438647} a^{13} - \frac{613395410}{25438647} a^{12} + \frac{1029215738}{25438647} a^{11} - \frac{511433269}{8479549} a^{10} + \frac{150175142}{1956819} a^{9} - \frac{1638437435}{25438647} a^{8} + \frac{125476722}{8479549} a^{7} + \frac{1085654608}{25438647} a^{6} - \frac{614354152}{8479549} a^{5} + \frac{1541564555}{25438647} a^{4} - \frac{3475180}{229177} a^{3} - \frac{671265728}{25438647} a^{2} + \frac{778370794}{25438647} a - \frac{19288885}{1496391} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1142.12354201 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T43):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.0.4608.1 x2, 4.2.9216.1 x2, 4.0.3072.1, \(\Q(\zeta_{8})\), 4.0.3072.2, 8.0.37748736.1, 8.0.9437184.1, 8.0.339738624.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |