Normalized defining polynomial
\( x^{16} + 30 x^{14} + 2080 x^{12} + 12320 x^{10} + 20240 x^{8} - 1020800 x^{6} + 258988800 x^{4} + 3940854400 x^{2} + 37449990400 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18397442524921103360102400000000000000=2^{24}\cdot 3^{8}\cdot 5^{14}\cdot 7^{8}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $213.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{80} a^{8}$, $\frac{1}{80} a^{9}$, $\frac{1}{160} a^{10}$, $\frac{1}{160} a^{11}$, $\frac{1}{443520} a^{12} - \frac{19}{27720} a^{10} - \frac{127}{22176} a^{8} + \frac{29}{11088} a^{6} + \frac{655}{5544} a^{4} + \frac{43}{462} a^{2} - \frac{37}{1386}$, $\frac{1}{443520} a^{13} - \frac{19}{27720} a^{11} - \frac{127}{22176} a^{9} + \frac{29}{11088} a^{7} + \frac{655}{5544} a^{5} + \frac{43}{462} a^{3} - \frac{37}{1386} a$, $\frac{1}{521586648148712815468800} a^{14} - \frac{21336707662542119}{52158664814871281546880} a^{12} + \frac{5333162205831181391}{2370848400675967343040} a^{10} - \frac{402889736442267083}{250762811609958084360} a^{8} + \frac{6790601082539777201}{271659712577454591390} a^{6} - \frac{75232122984074640895}{651983310185891019336} a^{4} + \frac{939391717293535799}{7951015977876719748} a^{2} + \frac{49237091542872815}{567929712705479982}$, $\frac{1}{30773612240774056112659200} a^{15} + \frac{3271508293276301413}{3077361224077405611265920} a^{13} + \frac{465816282482295122123}{307736122407740561126592} a^{11} + \frac{13192120364188115897}{2959001176997505395448} a^{9} - \frac{110226561022471417871}{1780880338007757876890} a^{7} + \frac{159599063412538396627}{3497001390997051830984} a^{5} - \frac{53874430554432335191}{469109942694726465132} a^{3} + \frac{10983318227064537923}{33507853049623318938} a$
Class group and class number
$C_{2}\times C_{4}\times C_{12}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17345479607.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{105}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{21}) \), 4.0.46125.1, 4.0.251125.1, \(\Q(\sqrt{5}, \sqrt{21})\), 8.0.5108165015625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.4 | $x^{8} + 2 x^{6} + 16$ | $2$ | $4$ | $12$ | $C_2^3: C_4$ | $[2, 2, 3]^{4}$ |
| 2.8.12.4 | $x^{8} + 2 x^{6} + 16$ | $2$ | $4$ | $12$ | $C_2^3: C_4$ | $[2, 2, 3]^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||