Normalized defining polynomial
\( x^{16} - 4 x^{15} + 302 x^{14} - 196 x^{13} + 39911 x^{12} + 73336 x^{11} + 3150376 x^{10} + 9423992 x^{9} + 152675079 x^{8} + 502233900 x^{7} + 4525440942 x^{6} + 13182702892 x^{5} + 78179443413 x^{4} + 171022222928 x^{3} + 703649768052 x^{2} + 892215487056 x + 2453609642404 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(183460757637086369287254273534720689045504=2^{34}\cdot 17^{8}\cdot 11525081^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $379.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 11525081$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} - \frac{1}{2} a^{5} + \frac{7}{16} a^{4} + \frac{1}{8} a^{3} + \frac{1}{16} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{1}{8} a^{6} + \frac{7}{16} a^{5} + \frac{1}{16} a^{3} + \frac{1}{8} a^{2} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} + \frac{1}{16} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{96} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{96} a^{8} - \frac{11}{96} a^{7} + \frac{1}{96} a^{6} + \frac{5}{96} a^{5} + \frac{41}{96} a^{4} - \frac{7}{24} a^{3} - \frac{11}{24} a^{2} - \frac{5}{24} a - \frac{1}{24}$, $\frac{1}{96} a^{12} - \frac{1}{48} a^{9} - \frac{1}{48} a^{8} + \frac{5}{48} a^{7} - \frac{11}{48} a^{6} - \frac{23}{48} a^{5} - \frac{31}{96} a^{4} + \frac{17}{48} a^{3} - \frac{13}{48} a^{2} + \frac{5}{24} a$, $\frac{1}{192} a^{13} - \frac{1}{192} a^{12} + \frac{1}{48} a^{10} + \frac{1}{12} a^{7} + \frac{1}{8} a^{6} - \frac{11}{64} a^{5} - \frac{55}{192} a^{4} - \frac{1}{16} a^{3} - \frac{1}{6} a^{2} - \frac{17}{48} a - \frac{3}{16}$, $\frac{1}{576} a^{14} + \frac{1}{576} a^{12} + \frac{1}{36} a^{10} + \frac{1}{72} a^{9} - \frac{1}{144} a^{8} - \frac{1}{9} a^{7} - \frac{23}{192} a^{6} + \frac{35}{72} a^{5} + \frac{7}{576} a^{4} - \frac{5}{36} a^{3} + \frac{1}{48} a^{2} + \frac{5}{18} a + \frac{13}{144}$, $\frac{1}{706514875078120522962458927813893857393746704225360204047764385694848} a^{15} + \frac{322073196057611094734143915977008140305744814451952191198556266689}{706514875078120522962458927813893857393746704225360204047764385694848} a^{14} - \frac{988741118698849777448039497990291991276497881545968164928512262265}{706514875078120522962458927813893857393746704225360204047764385694848} a^{13} + \frac{787239707236012225949978809092877998483688513047850771921381507}{1224462521799169017265960013542277049209266385139272450689366353024} a^{12} + \frac{1336265870348806974555710202101628612338881798019508593108961678707}{353257437539060261481229463906946928696873352112680102023882192847424} a^{11} - \frac{689994292661420165243172666967476005911544138687204615893737441733}{39250826393228917942358829322994103188541483568075566891542465871936} a^{10} + \frac{1594211296064582297313255206596296480526947620282409372924399014783}{353257437539060261481229463906946928696873352112680102023882192847424} a^{9} - \frac{10930087460917842246845529440322764430531559021223348834799254187229}{353257437539060261481229463906946928696873352112680102023882192847424} a^{8} - \frac{77694221376835967193523544778990682255192746379026501504577221469363}{706514875078120522962458927813893857393746704225360204047764385694848} a^{7} - \frac{136722329931613017498270206715656458021621145471528717237186165253803}{706514875078120522962458927813893857393746704225360204047764385694848} a^{6} + \frac{83912509236364935106696973338432233070553254136920242350453391759755}{706514875078120522962458927813893857393746704225360204047764385694848} a^{5} - \frac{152640773830039880571934697554877780566799702762881023608192498871097}{706514875078120522962458927813893857393746704225360204047764385694848} a^{4} - \frac{7131350402645607373393401966433185649597009568320013031278668654027}{22078589846191266342576841494184183043554584507042506376492637052964} a^{3} - \frac{14684467904897895448254154173250014201246035718867303410919129300109}{88314359384765065370307365976736732174218338028170025505970548211856} a^{2} - \frac{55304616785999552103051981574378255054601856120766285880860670394253}{176628718769530130740614731953473464348436676056340051011941096423712} a + \frac{14235227372541181789000720886569403683563564621927731024762051124427}{176628718769530130740614731953473464348436676056340051011941096423712}$
Class group and class number
$C_{2}\times C_{8}\times C_{568}$, which has order $9088$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 266041076739 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for t16n1472 are not computed |
| Character table for t16n1472 is not computed |
Intermediate fields
| \(\Q(\sqrt{34}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}, \sqrt{17})\), 8.0.15771013778653184.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.8.22.84 | $x^{8} + 4 x^{7} + 10 x^{4} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11525081 | Data not computed | ||||||