Properties

Label 16.0.18311949325...4032.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{37}\cdot 17^{8}\cdot 191$
Root discriminant $28.44$
Ramified primes $2, 17, 191$
Class number $1$
Class group Trivial
Galois group 16T1461

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![94, -724, 2470, -4848, 5981, -4890, 3011, -1838, 1165, -636, 324, -144, 55, -22, 7, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 7*x^14 - 22*x^13 + 55*x^12 - 144*x^11 + 324*x^10 - 636*x^9 + 1165*x^8 - 1838*x^7 + 3011*x^6 - 4890*x^5 + 5981*x^4 - 4848*x^3 + 2470*x^2 - 724*x + 94)
 
gp: K = bnfinit(x^16 - 2*x^15 + 7*x^14 - 22*x^13 + 55*x^12 - 144*x^11 + 324*x^10 - 636*x^9 + 1165*x^8 - 1838*x^7 + 3011*x^6 - 4890*x^5 + 5981*x^4 - 4848*x^3 + 2470*x^2 - 724*x + 94, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 7 x^{14} - 22 x^{13} + 55 x^{12} - 144 x^{11} + 324 x^{10} - 636 x^{9} + 1165 x^{8} - 1838 x^{7} + 3011 x^{6} - 4890 x^{5} + 5981 x^{4} - 4848 x^{3} + 2470 x^{2} - 724 x + 94 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(183119493251821345964032=2^{37}\cdot 17^{8}\cdot 191\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 191$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{28} a^{13} - \frac{3}{28} a^{12} - \frac{5}{28} a^{11} - \frac{3}{28} a^{10} - \frac{3}{7} a^{9} + \frac{3}{7} a^{8} + \frac{11}{28} a^{7} - \frac{1}{4} a^{6} - \frac{9}{28} a^{5} + \frac{1}{4} a^{4} + \frac{5}{14} a^{3} + \frac{3}{14} a^{2} - \frac{3}{14} a - \frac{3}{14}$, $\frac{1}{56} a^{14} + \frac{5}{28} a^{11} - \frac{1}{8} a^{10} - \frac{3}{7} a^{9} + \frac{19}{56} a^{8} - \frac{1}{28} a^{7} - \frac{2}{7} a^{6} - \frac{5}{14} a^{5} + \frac{17}{56} a^{4} + \frac{1}{7} a^{3} + \frac{3}{14} a^{2} - \frac{3}{7} a - \frac{9}{28}$, $\frac{1}{7887097666168} a^{15} + \frac{31837717581}{7887097666168} a^{14} + \frac{12782017813}{1971774416542} a^{13} + \frac{60994984924}{985887208271} a^{12} - \frac{2870833255165}{7887097666168} a^{11} + \frac{163298866021}{1126728238024} a^{10} + \frac{2122357454135}{7887097666168} a^{9} + \frac{1909809171169}{7887097666168} a^{8} + \frac{55176880751}{3943548833084} a^{7} + \frac{118355957005}{3943548833084} a^{6} - \frac{1980328334107}{7887097666168} a^{5} + \frac{1576754116779}{7887097666168} a^{4} - \frac{50206117981}{281682059506} a^{3} - \frac{57137985490}{985887208271} a^{2} + \frac{1843791015679}{3943548833084} a + \frac{139665237879}{563364119012}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 658167.181498 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1461:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1461 are not computed
Character table for t16n1461 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{17}) \), 4.0.2312.1 x2, 4.0.1088.2 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 8.0.342102016.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.10.3$x^{4} + 6 x^{2} - 9$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
2.4.10.2$x^{4} + 2 x^{2} - 1$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
2.4.11.15$x^{4} + 30$$4$$1$$11$$D_{4}$$[2, 3, 4]$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.8.4.1$x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$191$$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{191}$$x + 2$$1$$1$$0$Trivial$[\ ]$
191.2.0.1$x^{2} - x + 19$$1$$2$$0$$C_2$$[\ ]^{2}$
191.2.0.1$x^{2} - x + 19$$1$$2$$0$$C_2$$[\ ]^{2}$
191.2.1.1$x^{2} - 191$$2$$1$$1$$C_2$$[\ ]_{2}$